Skip to main content

Accurate Measurement of Blood Pressure

Abstract

Accurate Blood Pressure (BP) measurement is vital for appropriate diagnosis and management of cardiovascular risk. However, questions remain on the accuracy of cuff BP compared with invasive (intra-arterial) BP. Moreover, the critical physiological factors that are associated with inaccuracy of cuff BP and estimated central BP are still not fully understood. Our group has recently conducted a series of individual participant data meta-analyses, and targeted physiology studies to address these questions and build knowledge on possible ways to improve the accuracy of BP measurements. The aim of this review is to detail this work and briefly discuss future directions for the field.

References

  1. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 2017;70:1–25.

    Google Scholar 

  2. Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European society of cardiology and the European society of hypertension. J Hypertens 2018;36:1953–2041.

    Google Scholar 

  3. Zanchetti A, Mancia G. The centenary of blood pressure measurement: a tribute to Scipione Riva-Rocci. J Hypertens 1996;14:1–12.

    Google Scholar 

  4. Booth J. A short history of blood pressure measurement. Proc R Soc Med 1977;70:793–9.

    Google Scholar 

  5. Forouzanfar M, Dajani HR, Groza VZ, Bolic M, Rajan S, Batkin I. Oscillometric blood pressure estimation: past, present, and future. IEEE Rev Biomed Eng 2015;8:44–63.

    Google Scholar 

  6. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R; Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002;360: 1903–13.

    Google Scholar 

  7. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 2016;387:957–67.

    Google Scholar 

  8. Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, et al. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the subcommittee of professional and public education of the American heart association council on high blood pressure research. Hypertension 2005;45:142–61.

    Google Scholar 

  9. Padwal R, Campbell NRC, Schutte AE, Olsen MH, Delles C, Etyang A, et al. Optimizing observer performance of clinic blood pressure measurement: a position statement from the Lancet Commission on hypertension group. J Hypertens 2019;37:1737–45.

    Google Scholar 

  10. Campbell NRC, Padwal R, Picone DS, Su H, Sharman JE. The impact of small to moderate inaccuracies in assessing blood pressure on hypertension prevalence and control rates. J Clin Hypertens 2020;22:939–42.

    Google Scholar 

  11. Picone DS, Schultz MG, Otahal P, Aakhus S, Al-Jumaily AM, Black JA, et al. Accuracy of cuff-measured blood pressure: systematic reviews and meta-analyses. J Am Coll Cardiol 2017;70:572–86.

    Google Scholar 

  12. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, et al. The seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA 2003;289:2560–71.

    Google Scholar 

  13. Danaei G, Finucane MM, Lin JK, Singh GM, Paciorek CJ, Cowan MJ, et al. National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5.4 million participants. Lancet 2011;377:568–77.

    Google Scholar 

  14. Picone DS, Schultz MG, Otahal P, Black JA, Bos WJ, Chen CH, et al. Influence of age on upper arm cuff blood pressure measurement. Hypertension 2020;75:844–50.

    Google Scholar 

  15. Haider AW, Larson MG, Franklin SS, Levy D. Systolic blood pressure, diastolic blood pressure, and pulse pressure as predictors of risk for congestive heart failure in the Framingham Heart study. Ann Intern Med 2003;138:10–16.

    Google Scholar 

  16. Kannel WB, Gordon T, Schwartz MJ. Systolic versus diastolic blood pressure and risk of coronary heart disease: the Framingham study. Am J Cardiol 1971;27:335–46.

    Google Scholar 

  17. Flint AC, Conell C, Ren X, Banki NM, Chan SL, Rao VA, et al. Effect of systolic and diastolic blood pressure on cardiovascular outcomes. N Engl J Med 2019;381:243–51.

    Google Scholar 

  18. Yong PG, Geddes LA. The effect of cuff pressure deflation rate on accuracy in indirect measurement of blood pressure with the auscultatory method. J Clin Monit 1987;3:155–9.

    Google Scholar 

  19. Zheng D, Giovannini R, Murray A. Effect of respiration, talking and small body movements on blood pressure measurement. J Hum Hypertens 2012;26:458–62.

    Google Scholar 

  20. Blank SG, West JE, Müller FB, Cody RJ, Harshfield GA, Pecker MS, et al. Wideband external pulse recording during cuff deflation: a new technique for evaluation of the arterial pressure pulse and measurement of blood pressure. Circulation 1988; 77:1297–305.

  21. Kallioinen N, Hill A, Horswill MS, Ward HE, Watson MO. Sources of inaccuracy in the measurement of adult patients’ resting blood pressure in clinical settings: a systematic review. J Hypertens 2017;35:421–41.

    Google Scholar 

  22. Kroeker EJ, Wood EH. Comparison of simultaneously recorded central and peripheral arterial pressure pulses during rest, exercise and tilted position in man. Circ Res 1955;3:623–32.

    Google Scholar 

  23. Picone DS, Schultz MG, Peng X, Black JA, Dwyer N, Roberts-Thomson P, et al. Discovery of new blood pressure phenotypes and relation to accuracy of cuff devices used in daily clinical practice. Hypertension 2018;71:1239–47.

    Google Scholar 

  24. O’Rourke MF, Takazawa K, Tanaka N. Letter by O’Rourke et al regarding article “Brachial and radial systolic blood pressure are not the same: evidence to support the Popeye phenomenon”. Hypertension 2019;74:e34.

  25. Kroeker EJ, Wood EH. Beat-to-beat alterations in relationship of simultaneously recorded central and peripheral arterial pressure pulses during valsalva maneuver and prolonged expiration in man. J Appl Physiol 1956;8:483–94.

    Google Scholar 

  26. Davies JE, Shanmuganathan M, Francis DP, Mayet J, Hackett DR, Hughes AD. Caution using brachial systolic pressure to calibrate radial tonometric pressure waveforms: lessons from invasive study. Hypertension 2010;55:e4.

  27. Armstrong MK, Schultz MG, Picone DS, Black JA, Dwyer N, Roberts-Thomson P, et al. Brachial and radial systolic blood pressure are not the same: evidence to support the Popeye phenomenon. Hypertension 2019;73:1036–41.

    Google Scholar 

  28. Armstrong MK, Schultz MG, Picone DS, Black JA, Dwyer N, Roberts-Thomson P, et al. Response by Armstrong et al to letter regarding article “Brachial and radial systolic blood pressure are not the same: evidence to support the Popeye phenomenon”. Hypertension 2019;74:e35–e6.

    Google Scholar 

  29. Sharman JE. Central pressure should be used in clinical practice. Artery Res 2015;9:1–7.

    Google Scholar 

  30. Mitchell GF. Central pressure should not be used in clinical practice. Artery Res 2015;9:8–13.

    Google Scholar 

  31. Sharman JE, Avolio AP, Baulmann J, Benetos A, Blacher J, Blizzard CL, et al. Validation of non-invasive central blood pressure devices: ARTERY Society task force consensus statement on protocol standardization. Eur Heart J 2017;38:2805–12.

    Google Scholar 

  32. Papaioannou TG, Karageorgopoulou TD, Sergentanis TN, Protogerou AD, Psaltopoulou T, Sharman JE, et al. Accuracy of commercial devices and methods for noninvasive estimation of aortic systolic blood pressure a systematic review and meta-analysis of invasive validation studies. J Hypertens 2016;34:1237–48.

    Google Scholar 

  33. Shih YT, Cheng HM, Sung SH, Hu WC, Chen CH. Quantification of the calibration error in the transfer function-derived central aortic blood pressures. Am J Hypertens 2011;24:1312–17.

    Google Scholar 

  34. Verbeke F, Segers P, Heireman S, Vanholder R, Verdonck P, Van Bortel LM. Noninvasive assessment of local pulse pressure: importance of brachial-to-radial pressure amplification. Hypertension 2005;46:244–8.

    Google Scholar 

  35. Segers P, Mahieu D, Kips J, Rietzschel E, De Buyzere M, De Bacquer D, et al. Amplification of the pressure pulse in the upper limb in healthy, middle-aged men and women. Hypertension 2009;54:414–20.

    Google Scholar 

  36. Climie RED, Picone DS, Keske MA, Sharman JE. Brachial-to-radial systolic blood pressure amplification in patients with type 2 diabetes mellitus. J Hum Hypertens 2016;30:404–9.

    Google Scholar 

  37. Picone DS, Climie RED, Ahuja KDK, Keske MA, Sharman JE. Brachial-to-radial SBP amplification: implications of age and estimated central blood pressure from radial tonometry. J Hypertens 2015;33:1876–83.

    Google Scholar 

  38. Schultz MG, Picone DS, Armstrong MK, Black JA, Dwyer N, Roberts-Thomson P, et al. Validation study to determine the accuracy of central blood pressure measurement using the sphygmocor xcel cuff device. Hypertension 2020;76:244–50.

    Google Scholar 

  39. AtCor Medical. Brachial systolic and diastolic pressures are preferred when calibrating the radial artery waveform in sphygmocor studies. Sydney, Australia: AtCor Medical; 2013. Available from: http://www.atcormedical.com.au/pdf/papers/Preferred_Calibration_Pressures_for_SphygmoCor.pdf.

  40. Picone DS, Schultz MG, Peng X, Black JA, Dwyer N, Roberts-Thomson P, et al. Intra-arterial analysis of the best calibration methods to estimate aortic blood pressure. J Hypertens 2019;37:307–15.

    Google Scholar 

  41. Dörr M, Richter S, Eckert S, Ohlow MA, Hammer F, Hummel A, et al. Invasive validation of antares, a new algorithm to calculate central blood pressure from oscillometric upper arm pulse waves. J Clin Med 2019;8:1073.

    Google Scholar 

  42. Liu J, Cheng HM, Chen CH, Sung SH, Hahn JO, Mukkamala R. Patient-specific oscillometric blood pressure measurement: validation for accuracy and repeatability. IEEE J Transl Eng Health Med 2017;5:1900110.

    Google Scholar 

  43. Wang C, Li X, Hu H, Zhang L, Huang Z, Lin M, et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat Biomed Eng 2018;2:687–95.

    Google Scholar 

  44. Chandrasekhar A, Kim CS, Naji M, Natarajan K, Hahn JO, Mukkamala R. Smartphone-based blood pressure monitoring via the oscillometric finger-pressing method. Sci Transl Med 2018;10:eaap8674.

  45. Padwal R. Cuffless blood pressure measurement: how did accuracy become an afterthought? Am J Hypertens 2019;32:807–9.

  46. Sharman JE, O’Brien E, Alpert B, Schutte AE, Delles C, Hecht Olsen M, et al. Lancet commission on hypertension group position statement on the global improvement of accuracy standards for devices that measure blood pressure. J Hypertens 2020;38:21–9.

    Google Scholar 

  47. Sharman JE, O’Brien E, Alpert B, Delles C, Hecht Olsen M, McManus RJ, et al. Reply. J Hypertens 2020;38:775.

    Google Scholar 

  48. Picone DS, Deshpande RA, Schultz MG, Fonseca R, Campbell NRC, Delles C, et al. Nonvalidated home blood pressure devices dominate the online marketplace in Australia: major implications for cardiovascular risk management. Hypertension 2020;75:1593–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean S. Picone.

Additional information

Peer review under responsibility of the Association for Research into Arterial Structure and Physiology

Rights and permissions

This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picone, D.S. Accurate Measurement of Blood Pressure. Artery Res 26, 130–136 (2020). https://doi.org/10.2991/artres.k.200624.001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2991/artres.k.200624.001

Keywords