Skip to main content

Rationale and Design of a Randomized Controlled Trial to Evaluate the Effects of Probiotics during Energy Restriction on Blood Pressure, Body Composition, Metabolic Profile and Vascular Function in Obese Hypertensive Individuals

Abstract

Introduction

Hypertension ofen clusters with other cardiovascular risk factors such as obesity, dyslipidemia and glucose intolerance. Weight loss can decrease Blood Pressure (BP) and improve cardiometabolic abnormalities. There is evidence that hypertension and obesity are associated with alterations in gut microbiome. Recent studies evaluating the effects of probiotics on BP, body weight, metabolic profile, inflammatory biomarkers, endothelial function and arterial stiffness found inconsistent results, probably due to the wide heterogeneity in trials design. To date, it is not known if probiotics can potentiate the effects of energy restriction in individuals with increased risk of metabolic, inflammatory and vascular abnormalities such as individuals presenting hypertension and obesity.

Objective

To evaluate the effects of probiotics during energy restriction on BP, body adiposity (total, central and visceral), insulin resistance, lipid profile, microvascular reactivity and arterial stiffness in obese hypertensive subjects.

Methods

This 12-week randomized, double-blind, controlled clinical trial with obese hypertensive adults, instructed to follow an energy-reduced diet (-800 Kcal/day) will be conducted at State University of Rio de Janeiro, Brazil. Probiotics and control groups will take one capsule/day containing nine freeze-dried probiotic strains and cellulose, respectively. At baseline and at the end of the study, participants will undergo nutritional, laboratory, BP and vascular evaluation. Nutritional assessment will include bioelectrical impedance analysis and dual energy X-ray absorptiometry. Laboratory parameters will include glucose, insulin, lipid profile, C-reactive protein, adiponectin, tumor necrosis factor alpha, interleukin-6 and lipopolysaccharide. Post-occlusive microvascular reactivity will be evaluated by laser speckle contrast imaging and oscillometric pulse wave analysis by Mobil-O-Graph.

References

  1. Forouzanfar MH, Afshin A, Alexander LT, Anderson HR, Bhutta ZA, Biryukov S, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016;388:1659–724.

    Google Scholar 

  2. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation 2016;134:441–50.

    Google Scholar 

  3. Rapsomaniki E, Timmis A, George J, Pujades-Rodriguez M, Shah AD, Denaxas S, et al. Blood pressure and incidence of twelve cardiovascular diseases: Lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people. Lancet 2014;383:1899–911.

    Google Scholar 

  4. Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L, et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990-2015. JAMA 2017;317: 165–82.

    Google Scholar 

  5. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002;360: 1903–13.

    Google Scholar 

  6. Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American college of cardiology/American Heart Association task. Hypertension 2018;71:1269–324.

    Google Scholar 

  7. Williams B, Mancia G, Spiering W, Rosei EA, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for themanagement of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J 2018;39:3021–104.

    Google Scholar 

  8. Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol 2019;15:367–85.

    Google Scholar 

  9. Garvey WT, Mechanick JI, Brett EM, Garber AJ, Hurley DL, Jastreboff AM, et al. American association of clinical endocrinologists and American college of endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity. Endocr Pract 2016;22:1–203.

    Google Scholar 

  10. Li P, Wang L, Liu C. Overweightness, obesity and arterial stiffness in healthy subjects: a systematic review and meta-analysis of literature studies. Postgrad Med 2017;129:224–30.

    Google Scholar 

  11. Jia G, Aroor AR, Sowers JR. The role of mineralocorticoid receptor signaling in the cross-talk between adipose tissue and the vascular wall. Cardiovasc Res 2017;113:1055–63.

    Google Scholar 

  12. Appel LJ. The effects of dietary factors on blood pressure. Cardiol Clin 2017;35:197–212.

    Google Scholar 

  13. Neter JE, Stam BE, Kok FJ, Grobbee DE, Geleijnse JM. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension 2003;42:878–84.

    Google Scholar 

  14. Joris PJ, Plat J, Kusters YH, Houben AJ, Stehouwer CD, Schalkwijk CG, et al. Diet-induced weight loss improves not only cardiometabolic risk markers but also markers of vascular function: a randomized controlled trial in abdominally obese men. Am J Clin Nutr 2017;105:23–31.

    Google Scholar 

  15. Bianchi VE. Weight loss is a critical factor to reduce inflammation. Clin Nutr ESPEN 2018;28:21–35.

    Google Scholar 

  16. Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res 2018;120:1183–96.

    Google Scholar 

  17. Moran-Ramos S, López-Contreras BE, Canizales-Quinteros S. Gut microbiota in obesity and metabolic abnormalities: a matter of composition or functionality? Arch Med Res 2017;48:735–53.

  18. Ascher S, Reinhardt C. The gut microbiota: an emerging risk factor for cardiovascular and cerebrovascular disease. Eur J Immunol 2018;48:564–75.

    Google Scholar 

  19. Kim S, Goel R, Kumar A, Qi Y, Lobaton G, Hosaka K, et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond) 2018;132:701–18.

    Google Scholar 

  20. Battson ML, Lee DM, Weir TL, Gentile CL. The gut microbiota as a novel regulator of cardiovascular function and disease. J Nutr Biochem 2018;56:1–15.

    Google Scholar 

  21. Dan X, Mushi Z, Baili W, Han L, Enqi W, Huanhu Z, et al. Differential analysis of hypertension-associated intestinal microbiota. Int J Med Sci 2019;16:872–81.

    Google Scholar 

  22. Menni C, Lin C, Cecelja M, Mangino M, Matey-Hernandez ML, Keehn L, et al. Gut microbial diversity is associated with lower arterial stiffness in women. Eur Heart J 2018;39:2390–7.

    Google Scholar 

  23. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56:1761–72.

    Google Scholar 

  24. Rajani C, Jia W. Disruptions in gut microbial-host co- metabolism and the development of metabolic disorders. Clin Sci (Lond) 2018;132:791–811.

    Google Scholar 

  25. Organ CL, Otsuka H, Bhushan S, Wang Z, Bradley J, Trivedi R, et al. Choline diet and its gut microbe–derived metabolite, trimethylamine n-oxide, exacerbate pressure overload–induced heart failure. Circ Hear Fail 2016;9:139–48.

    Google Scholar 

  26. Senthong V, Wang Z, Fan Y, Wu Y, Hazen SL, Tang WHW. Trimethylamine N-oxide and mortality risk in patients with peripheral artery disease. J Am Heart Assoc 2016;5:e004237.

  27. Geng J, Yang C, Wang B, Zhang X, Hu T, Gu Y, et al. Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomed Pharmacother 2018;97:941–7.

    Google Scholar 

  28. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014;11:506–14.

    Google Scholar 

  29. Zhang Q, Wu Y, Fei X. Effect of probiotics on body weight and body-mass index: a systematic review and meta-analysis of randomized, controlled trials. Int J Food Sci Nutr 2016;67:571–80.

    Google Scholar 

  30. Park S, Bae JH. Probiotics for weight loss: a systematic review and meta-analysis. Nutr Res 2015;35:566–75.

    Google Scholar 

  31. Sun J, Buys N. Effects of probiotics consumption on lowering lipids and CVD risk factors: a systematic review and meta-analysis of randomized controlled trials. Ann Med 2015;47:430–40.

    Google Scholar 

  32. Sabico S, Al-Mashharawi A, Al-Daghri NM, Yakout S, Alnaami AM, Alokail MS, et al. Effects of a multi-strain probiotic supplement for 12 weeks in circulating endotoxin levels and cardiometabolic profiles of medication naïve T2DM patients: a randomized clinical trial. J Transl Med 2017;15:249.

    Google Scholar 

  33. Kim J, Yun JM, Kim MK, Kwon O, Cho B. Lactobacillus gasseri BNR17 supplementation reduces the visceral fat accumulation and waist circumference in obese adults: a randomized, double-blind, placebo-controlled trial. J Med Food 2018;21:454–61.

    Google Scholar 

  34. Borgeraas H, Johnson LK, Skattebu J, Hertel JK, Hjelmesæth J. Effects of probiotics on body weight, body mass index, fat mass and fat percentage in subjects with overweight or obesity: a systematic review and meta-analysis of randomized controlled trials. Obes Rev 2018;19:219–32.

    Google Scholar 

  35. Koutnikova H, Genser B, Monteiro-Sepulveda M, Faurie JM, Rizkalla S, Schrezenmeir J, et al. Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: a systematic review and meta-analysis of randomised controlled trials. BMJ Open 2019;9:e017995.

  36. Raygan F, Rezavandi Z, Bahmani F, Ostadmohammadi V, Mansournia MA, Tajabadi-Ebrahimi M, et al. The effects of probiotic supplementation on metabolic status in type 2 diabetic patients with coronary heart disease. Diabetol Metab Syndr 2018;10:51.

    Google Scholar 

  37. Kobyliak N, Falalyeyeva T, Mykhalchyshyn G, Kyriienko D, Komissarenko I. Effect of alive probiotic on insulin resistance in type 2 diabetes patients: randomized clinical trial. Diabetes Metab Syndr 2018;12:617–24.

    Google Scholar 

  38. He J, Zhang F, Han Y. Effect of probiotics on lipid profiles and blood pressure in patients with type 2 diabetes: a meta-analysis of RCTs. Medicine (Bailtimore) 2017;96:e9166.

  39. Tanaka M. Improving obesity and blood pressure. Hypertens Res 2020;43:79–89.

    Google Scholar 

  40. Sabico S, Al-Mashharawi A, Al-Daghri NM, Wani K, Amer OE, Hussain DS, et al. Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, inflammatory and cardiometabolic status of T2DM patients: a randomized, double-blind, placebo-controlled trial. Clin Nutr 2019;38:1561–9.

    Google Scholar 

  41. Dong JY, Szeto IM, Makinen K, Gao Q, Wang J, Qin LQ, et al. Effect of probiotic fermented milk on blood pressure: a meta-analysis of randomised controlled trials. Br J Nutr 2013;110:1188–94.

    Google Scholar 

  42. Khalesi S, Sun J, Buys N, Jayasinghe R. Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension 2014;64:897–903.

    Google Scholar 

  43. Rezazadeh L, Gargari BP, Jafarabadi MA, Alipour B. Effects of probiotic yogurt on glycemic indexes and endothelial dysfunction markers in patients with metabolic syndrome. Nutrition 2019;62:162–8.

    Google Scholar 

  44. Malik M, Suboc TM, Tyagi S, Salzman N, Wang J, Ying R, et al. Lactobacillus plantarum 299v supplementation improves vascular endothelial function and reduces inflammatory biomarkers in men with stable coronary artery disease. Circ Res 2018;123: 1091–102.

    Google Scholar 

  45. Szulińska M, Łoniewski I, Skrypnik K, Sobieska M, Korybalska K, Suliburska J, et al. Multispecies probiotic supplementation favorably affects vascular function and reduces arterial stiffness in obese postmenopausal women—a 12-week placebo-controlled and randomized clinical study. Nutrients 2018;10:1672.

    Google Scholar 

  46. Institute of Medicine (IOM). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington D.C., USA: The National Academies Press; 2005, p. 1357.

  47. Instituto Brasileiro de Geografia e Estatística - IBGE. Pesquisa de Orçamentos Familiares 2008-2009: Tabelas de Composição Nutricional dos Alimentos Consumidos no Brasil [Internet], vols. 39; 2011. p. 35–340. Available from: https://biblioteca.ibge.gov.br/visualizacao/livros/liv50002.pdf.

  48. Universidade Estadual de Campinas (UNICAMP). Tabela Brasileira de Composição de Alimentos - TACO [Internet]; 2011, pp. 26–155. Available from: http://www.nepa.unicamp.br/taco/contar/taco_4_edicao_ampliada_e_revisada.pdf?arquivo=taco_4_versao_ampliada_e_revisada.pdf.

  49. World Health Organization (WHO). Obesity: preventing and managing the global epidemic. Geneva: World Health Organization; 2000, p. 252. Available from: https://www.who.int/nutrition/publications/obesity/WHO_TRS_894/en/.

  50. World Health Organization (WHO). WHO | Waist Circumference and Waist-Hip Ratio. Report of a WHO Expert Consultation. Geneva: World Health Organization; 2008. Available from: http://www.who.int.

  51. Onat A, Hergenç G, Yüksel H, Can G, Ayhan E, Kaya Z, et al. Neck circumference as a measure of central obesity: associations with metabolic syndrome and obstructive sleep apnea syndrome beyond waist circumference. Clin Nutr 2009;28:46–51.

    Google Scholar 

  52. Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Manuel Gómez J, et al. Bioelectrical impedance analysis—part II: utilization in clinical practice. Clin Nutr 2004;23:1430–53.

    Google Scholar 

  53. Barbosa-Silva MCG, Barros AJD. Bioelectrical impedance analysis in clinical practice: a new perspective on its use beyond body composition equations. Curr Opin Clin Nutr Metab Care 2005;8:311–7.

    Google Scholar 

  54. Segal KR, Van Loan M, Fitzgerald PI, Hodgdon JA, Van Itallie TB. Lean body mass estimation by bioelectrical impedance analysis: a four-site cross-validation study. Am J Clin Nutr 1988;47:7–14.

    Google Scholar 

  55. Gray DS, Bray GA, Gemayel N, Kaplan K. Effect of obesity on bioelectrical impedance. Am J Clin Nutr 1989;50:255–60.

    Google Scholar 

  56. Kaul S, Rothney MP, Peters DM, Wacker WK, Davis CE, Shapiro MD, et al. Dual-energy X-ray absorptiometry for quantification of visceral fat. Obesity (Silver Spring) 2012;20:1313–8.

    Google Scholar 

  57. Matsudo S, Araújo T, Matsudo V, Andrade D, Andrade E, Oliveira LC, et al. Questionário Internacional De Atividade Física (Ipaq): Estudo De Validade E Reprodutibilidade No Brasil. Rev Bras Atividade Física Saúde 2001;6:5–18.

    Google Scholar 

  58. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972;18:499–502.

    Google Scholar 

  59. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985;28:412–9.

    Google Scholar 

  60. Jardim PC, Souza WK, Lopes RD, Brandão AA, Malachias MV, Gomes MM, et al. I RBH - first brazilian hypertension registry. Arq Bras Cardiol 2016;107:93–8 [Article in English, Portuguese].

    Google Scholar 

  61. Souza CA de, Simões R, Borges KBG, Oliveira AN, Zogeib JB, Alves B, et al. Arterial stiffness use for early monitoring of cardiovascular adverse events due to anthracycline chemotherapy in breast cancer patients. A pilot study. Arq Bras Cardiol 2018;111:721–8 [Article in English, Portuguese].

    Google Scholar 

  62. Asmar R, Benetos A, Topouchian J, Laurent P, Pannier B, Brisac AM, et al. Assessment of arterial distensibility by automatic pulse wave velocity measurement: validation and clinical application studies. Hypertension 1995;26:485–90.

    Google Scholar 

  63. Wilkinson IB, MacCallum H, Flint L, Cockcroft JR, Newby DE, Webb DJ. The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol 2000;525:263–70.

    Google Scholar 

  64. Mahé G, Humeau-Heurtier A, Durand S, Leftheriotis G, Abraham P. Assessment of skin microvascular function and dysfunction with laser speckle contrast imaging. Circ Cardiovasc Imaging 2012;5:155–63.

    Google Scholar 

  65. Khalesi S, Bellissimo N, Vandelanotte C, Williams S, Stanley D, Irwin C. A review of probiotic supplementation in healthy adults: helpful or hype? Eur J Clin Nutr 2019;73:24–37.

  66. O’Morain VL, Ramji DP. The potential of probiotics in the prevention and treatment of atherosclerosis. Mol Nutr Food Res 2020;64:e1900797.

  67. Wang L, Guo MJ, Gao Q, Yang JF, Yang L, Pang XL, et al. The effects of probiotics on total cholesterol. Medicine (Baltimore) 2018;97:e9679.

  68. Yan S, Tian Z, Li M, Li B, Cui W. Effects of probiotic supplementation on the regulation of blood lipid levels in overweight or obese subjects: a meta-analysis. Food Funct 2019;10: 1747–59.

    Google Scholar 

  69. Shimizu M, Hashiguchi M, Shiga T, Tamura H, Mochizuki M. Meta-analysis: effects of probiotic supplementation on lipid profiles in normal to mildly hypercholesterolemic individuals. PLoS One 2015;10:e0139795.

  70. Jung SP, Lee KM, Kang JH, Yun SI, Park HO, Moon Y, et al. Effect of Lactobacillus gasseri BNR17 on overweight and obese adults: a randomized, double-blind clinical trial. Korean J Fam Med 2013;34:80–9.

    Google Scholar 

  71. Minami J, Kondo S, Yanagisawa N, Odamaki T, Xiao J, Abe F, et al. Oral administration of Bifidobacterium breve B-3 modifies metabolic functions in adults with obese tendencies in a randomised controlled trial. J Nutr Sci 2015;4:e17.

  72. Sharafedtinov KK, Plotnikova OA, Alexeeva RI, Sentsova TB, Songisepp E, Stsepetova J, et al. Hypocaloric diet supplemented with probiotic cheese improves body mass index and blood pressure indices of obese hypertensive patients—a randomized double-blind placebo-controlled pilot study. Nutr J 2013;12:138.

    Google Scholar 

  73. Lee SJ, Bose S, Seo JG, Chung WS, Lim CY, Kim H. The effects of co-administration of probiotics with herbal medicine on obesity, metabolic endotoxemia and dysbiosis: a randomized double-blind controlled clinical trial. Clin Nutr 2014;33: 973–81.

    Google Scholar 

  74. Andreasen AS, Larsen N, Pedersen-Skovsgaard T, Berg RM, Møller K, Svendsen KD, et al. Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects. Br J Nutr 2010;104:1831–8.

    Google Scholar 

  75. Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, et al. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 2010;64:636–43.

    Google Scholar 

  76. Simon MC, Strassburger K, Nowotny B, Kolb H, Nowotny P, Burkart V, et al. Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept. Diabetes Care 2015;38:1827–34.

    Google Scholar 

  77. Li T, Chen Y, Gua C, Li X. Elevated circulating trimethylamine N-oxide levels contribute to endothelial dysfunction in aged rats through vascular inflammation and oxidative stress. Front Physiol 2017;8:350.

    Google Scholar 

  78. Ma J, Li H. The role of gut microbiota in atherosclerosis and hypertension. Front Pharmacol 2018;9:1082.

    Google Scholar 

  79. Vaios V, Georgianos PI, Pikilidou MI, Eleftheriadis T, Zarogiannis S, Papagianni A, et al. Accuracy of a newly-introduced oscillometric device for the estimation of arterial stiffness indices in patients on peritoneal dialysis: a preliminary validation study. Adv Perit Dial 2018;34:24–31.

    Google Scholar 

  80. Georgianos P, Vaios V, Pikilidou M, Papagianni A, Zebekakis P, Liakopoulos V. A comparison study between Mobil-O-Graph and sphygmocor devices in assessing aortic systolic pressure and pulse wave velocity in peritoneal dialysis patients. J Hypertens 2018;36:e80.

  81. Benas D, Kornelakis M, Triantafyllidi H, Kostelli G, Pavlidis G, Varoudi M, et al. Pulse wave analysis using the Mobil-O-Graph, Arteriograph and Complior device: a comparative study. Blood Press 2019;28:107–13.

    Google Scholar 

  82. Hametner B, Wassertheurer S, Kropf J, Mayer C, Eber B, Weber T. Oscillometric estimation of aortic pulse wave velocity: comparison with intra-aortic catheter measurements. Blood Press Monit 2013;18:173–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcia Regina Simas Torres Klein.

Additional information

Peer review under responsibility of the Association for Research into Arterial Structure and Physiology

Data availability statement: Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Rights and permissions

This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guedes, M.R., da Silva Pontes, K.S., Valença, D.C.T. et al. Rationale and Design of a Randomized Controlled Trial to Evaluate the Effects of Probiotics during Energy Restriction on Blood Pressure, Body Composition, Metabolic Profile and Vascular Function in Obese Hypertensive Individuals. Artery Res 26, 102–110 (2020). https://doi.org/10.2991/artres.k.200429.001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2991/artres.k.200429.001

Keywords