Skip to main content

Porphyromonas gingivalis vesicles reduce MDA-LDL levels and aortic wall thickness in high fat diet induced atherosclerosis rats

Abstract

Background

Recently, atherosclerosis-associated disease has been reported simultaneously increased. Whereas, to date, no atherosclerosis vaccine is available. Since the epitope mimicry between malondialdehyde low-density lipoprotein (MDA-LDL) and arginine specific epitope gingipain (Rgp) on the Porphyromonas gingivalis vesicles has been reported, it raises an opportunity to employ the potency of P. gingivalis as an atherosclerosis vaccine.

Objective

To evaluate the potency of P. gingivalis vesicles to prevent atherosclerosis, by assessing MDA-LDL level, visceral fat, body weight, and aortic wall thickness, in rats model.

Methods

Five groups of rats (n = 10 per group), three treatment groups, one positive and negative control group were assigned and adapted with high fat diet for 8 weeks. The treatment groups were injected with P. gingivalis vesicles with and without adjuvant with four booster doses. The level of MDA-LDL serum, visceral fat, body weight, and aortic wall thickness were measured in the end of the course.

Results

Our present study found that decreased in MDA-LDL levels (p = 0.037) and aortic wall thickness (p = 0.016) were observed in rats treated with vesicles and adjuvants, but not with vesicles or adjuvants only, compared to negative control. Moreover, MDA-LDL levels in rats immunized with vesicles and adjuvants were significantly lower than healthy rats. However, body weight (p = 0.329 and visceral fat (p = 0.789) were not significantly different in all treatment groups compared to control.

Conclusions

Immunization with P. gingivalis vesicles and adjuvants significantly reduces MDA-LDL level and aortic wall thickness in rats model.

References

  1. Chatzidimitriou D, Kirmizis D, Gavriilaki E, Chatzidimitriou M, Malisiovas N. Atherosclerosis and infection: is the jury still not in? Future Microbiol 2012;7(10):1217–30.

    Google Scholar 

  2. Fajar JK. The β fibrinogen gene G-455A polymorphism in Asian subjects with coronary heart disease: a meta analysis. Egypt J Med Hum Genet 2017;18:19–28.

    Google Scholar 

  3. World Health Organization. Cardiovascular diseases (CVDs). Geneva: World Health Organization; 2017.

  4. Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS) developed with the special contribution of the European Assocciation for Cardiovascular Prevention & Rehabilitation (EACPR). Atherosclerosis 2016;253:281–344.

    Google Scholar 

  5. Roth GA, Forouzanfar MH, Moran AE, Barber R, Nguyen G, Feigin VL, et al. Demographic and epidemiologic drivers of global cardiovascular mortality. N Engl J Med 2015;372(14): 1333–41.

    Google Scholar 

  6. Negi S, Anand A. Atherosclerotic coronary heart disease-epidemiology, classification and management. Cardiovasc Hematol Disord Drug Targets 2010;10(4):257–61.

    Google Scholar 

  7. Palinski W, Miller E, Witztum JL. Immunization of low density lipoprotein (LDL) receptor-deficient rabbits with homologous malondialdehyde-modified LDL reduces atherogenesis. Proc Natl Acad Sci USA 1995;92:821–5.

    Google Scholar 

  8. Freigang S, Horkko S, Miller E, Witztum JL, Palinski W. Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler Thromb Vasc Biol 1998;18:1972–82.

    Google Scholar 

  9. George J, Afek A, Gilburd B, Levkovitz H, Shaish A, Goldberg I, et al. Hyperimmunization of apo-E-deficient mice with homologous malondialdehyde low-density lipoprotein suppresses early atherogenesis. Atherosclerosis 1998;138:147–52.

    Google Scholar 

  10. Zhou X, Caligiuri G, Hamsten A, Lefvert AK, Hansson GK. LDL immunization induces T-cell-dependent antibody formation and protection against atherosclerosis. Arterioscler Thromb Vasc Biol 2001;21:108–14.

    Google Scholar 

  11. Chyu KY, Reyes OS, Zhao X, Yano J, Dimayuga P, Nilsson J, et al. Timing affects the efficacy of LDL immunization on atherosclerotic lesions in apoE (-/-) mice. Atherosclerosis 2004;176: 27–35.

    Google Scholar 

  12. Zhou X, Robertson AK, Rudling M, Parini P, Hansson GK. Lesion development and response to immunization reveal a complex role for CD4 in atherosclerosis. Circ Res 2005;96:427–34.

    Google Scholar 

  13. Ameli S, Hultgardh-Nilsson A, Regnstrom J, Calara F, Yano J, Cercek B, et al. Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholester-olemic rabbits. Arterioscler Thromb Vasc Biol 1996;16: 1074–9.

    Google Scholar 

  14. Habets KL, van Puijvelde GH, van Duivenvoorde LM, van Wanrooij EJ, de Vos P, Tervaert JW, et al. Vaccination using oxidized low-density lipoprotein-pulsed dendritic cells reduces atherosclerosis in LDL receptor-deficient mice. Cardiovasc Res 2010;85:622–30.

    Google Scholar 

  15. Zhang Y, Xiong Q, Hu X, Sun Y, Tan X, Zhang H, et al. A novel atherogenic epitope from Mycobacterium tuberculosis heat shock protein 65 enhances atherosclerosis in rabbit and LDL receptor-deficient mice. Heart Vessels 2012;27:411–8.

    Google Scholar 

  16. Fredrikson GN, Bjorkbacka H, Soderberg I, Ljungcrantz I, Nilsson J. Treatment with apoB peptide vaccines inhibits atherosclerosis in human apoB-100 transgenic mice without inducing an increase in peptide-specific antibodies. J Intern Med 2008;264:563–70.

    Google Scholar 

  17. Klingenberg R, Lebens M, Hermansson A, Fredrikson GN, Strodthoff D, Rudling M, et al. Intranasal immunization with an apolipoprotein B-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis. Arterioscler Thromb Vasc Biol 2010;30:946–52.

    Google Scholar 

  18. Wigren M, Kolbus D, Duner P, Ljungcrantz I, Söderberg I, Björkbacka H, et al. Evidence for a role of regulatory T cells in mediating the atheroprotective effect of apolipoprotein B peptide vaccine. J Intern Med 2010;269:546–56.

    Google Scholar 

  19. Chyu KY, Zhao X, Dimayuga PC, Zhou J, Li X, Yano J, et al. CD8+ T cells mediate the athero-protective effect of immunization with an apoB-100 peptide. PLoS One 2012;7:e30780.

  20. Moriyama K, Takahashi E. Evaluation of malondialdehyde low-density lipoprotein stratified by low-density lipoprotein cholesterol. Clin Lab 2017;63(7):1179–86.

    Google Scholar 

  21. Binder CJ, Hörkkö S, Dewan A, Chang MK, Kieu EP, Goodyear CS, et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med 2003;9(6):736–43.

    Google Scholar 

  22. Winarsih S, Yudhinata RBN, Zaka MP, Luthfia TS, Tamara F, Indra AM. Atherosclerosis vaccine using bacteria Salmonella typhimurium on rat models. Br J Med Med Res 2014;4(36): 5729–40.

    Google Scholar 

  23. Lavallée P, Perchaud V, Gautier-Bertrand M, Grabli D, Amarenco P. Association between influenza vaccination and reduced risk of brain infarction. Stroke 2002;33(2):513–8.

    Google Scholar 

  24. Ren S, Hure A, Peel R, D’Este C, Abhayaratna W, Tonkin A, et al., AUSPICE Study Group. Rationale and design of a randomized controlled trial of pneumococcal polysaccharide vaccine for prevention of cardiovascular events: the Australian Study for the Prevention through Immunization of Cardiovascular Events (AUSPICE). Am Heart J 2016;177. 58–56.

  25. Hussain M, Stover CM, Dupont AP. Gingivalis in periodontal disease and atherosclerosis – scenes of action for antimicrobial peptides and complement. Front Immunol 2015;6:45.

    Google Scholar 

  26. Turunen SP, Kummu O, Harila K, Veneskoski M, Soliymani R, Baumann M, et al. Recognition of Porphyromonas gingivalis gingipain epitopes by natural IgM binding to malondialdehyde modified low-density lipoprotein. PLoS One 2012;7(4):e34910.

  27. Frank SA. Immunology and evolution of infectious disease. Princeton: Princeton University Press; 2002.

  28. Grenier D, Mayrand D. Functional characterization of extracellular vesicles produced by Bacteroides gingivalis. Infect Immun 1987;55(1):111–7.

    Google Scholar 

  29. Raja B, Saravanakumar M, Sathya G. Veratric acid ameliorates hyperlipidemia and oxidative stress in Wistar rats fed an atherogenic diet. Mol Cell Biochem 2012;366(1–2):21–30.

    Google Scholar 

  30. Nakao R, Hasegawa H, Ochiai K, Takashiba S, Ainai A, Ohnishi M, et al. Outer membrane vesicles of Porphyromonas gingivalis elicit a mucosal immune response. PLoS One 2011; 6(10):e26163.

  31. Venegas-Pino DE, Banko N, Khan MI, Shi Y, Werstuck GH. Quantitative analysis and characterization of atherosclerotic lesions in the murine aortic sinus. J Vis Exp 2013;82:50933.

    Google Scholar 

  32. Arbab-Zadeh A, Fuster V. The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J Am Coll Cardiol 2015;65(8):846–55.

    Google Scholar 

  33. Kurita-Ochiai T, Yamamoto M. Periodontal pathogens and atherosclerosis: implications of inflammation and oxidative modification of LDL. Biomed Res Int 2014;2014:595981.

    Google Scholar 

  34. Amaki T, Suzuki T, Nakamura F, Hayashi D, Imai Y, Morita H, et al. Circulating malondialdehyde modified LDL is a biochemical risk marker for coronary artery disease. Heart 2004;90(10):1211–3.

    Google Scholar 

  35. Suzuki H, Sasaki T, Kumagai T, Sakaguchi S, Nagata K. Malon-dialdehyde-modified low density lipoprotein (MDA-LDL)-induced cell growth was suppressed by polycyclic aromatic hydrocarbons (PAHs). J Toxicol Sci 2010;35(2):137–47.

    Google Scholar 

  36. Viigimaa M, Abina J, Zemtsovskaya G, Tikhaze A, Konovalova G, Kumskova E, et al. Malondialdehyde-modified low-density lipoproteins as biomarker for atherosclerosis. Blood Press 2010;19(3):164–8.

    Google Scholar 

  37. Tanaga K, Bujo H, Inoue M, Mikami K, Kotani K, Takahashi K, et al. Increased circulating malondialdehyde-modified LDL levels in patients with coronary artery diseases and their association with peak sizes of LDL particles. Arterioscler Thromb Vasc Biol 2002;22(4):662–6.

    Google Scholar 

  38. Takamura TA, Tsuchiya T, Oda M, Watanabe M, Saito R, Sato-Ishida R, et al. Circulating malondialdehyde-modified low-density lipoprotein (MDA-LDL) as a novel predictor of clinical outcome after endovascular therapy in patients with peripheral artery disease (PAD). Atherosclerosis 2017;263: 192–7.

    Google Scholar 

  39. Kearney JF. Immune recognition of OxLDL in atherosclerosis. J Clin Investig 2000;105(12):1683–5.

    Google Scholar 

  40. Tsimikas S, Brilakis ES, Miller ER, McConnell JP, Lennon RJ, Kornman KS, et al. Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N Engl J Med 2005;353(1):46–57.

    Google Scholar 

  41. Veith PD, Talbo GH, Slakeski N, Dashper SG, Moore C, Paolini RA, et al. Major outer membrane proteins and proteolytic processing of RgpA and Kgp of Porphyromonas gingivalis W50. Biochem J 2002;363(Pt. 1):105–15.

    Google Scholar 

  42. Amir S, Hartvigsen K, Gonen A, Leibundgut G, Que X, Jensen-Jarolim E, et al. Peptide mimotopes of malondialdehyde epi-topes for clinical applications in cardiovascular disease. J Lipid Res 2012;53(7):1316–26.

    Google Scholar 

  43. Koizumi Y, Kurita-Ochiai T, Oguchi S, Yamamoto M. Nasal immunization with Porphyromonas gingivalis outer membrane protein decreases P. gingivalis-induced atherosclerosis and inflammation in spontaneously hyperlipidemic mice. Infect Immun 2008;76(7):2958–65.

    Google Scholar 

  44. Fukasawa A, Kurita-Ochiai T, Hashizume T, Kobayashi R, Akimoto Y, Yamamoto M. Intranasal immunization with Porphyromonas gingivalis outer membrane protein inhibits P. gingivalis – induced atherosclerosis in C57BL/6 mice fed a high-fat diet. Int J Oral Med Sci 2012;10(4):362–71.

    Google Scholar 

  45. Turunen SP, Kummu O, Wang C, Harila K, Mattila R, Sahlman M, et al. Immunization with malondialdehyde-modified low-density lipoprotein (LDL) reduces atherosclerosis in LDL receptor-deficient mice challenged with Porphyromonas gingivalis. Innate Immun 2015;21(4):370–85.

    Google Scholar 

  46. Koizumi Y, Kurita-Ochiai T, Oguchi S, Yamamoto M. Nasal immunization with a 40-kDa outer membrane protein of Porphyromonas gingivalis inhibits atherosclerotic plaque accumulation caused by oral P. gingivalis infection. Int J Oral Med Sci 2008;6(3):150–8.

    Google Scholar 

  47. Takeuchi T, Hashizume-Takizawa T, Kobayashi R. Oral immunization with Porphyromonas gingivalis outer membrane protein and CpG oligodeoxynucleotides attenuates P. gingivalis-accelerated atherosclerosis and inflammation. J Oral Bio-sciences 2017;59(4):224–30.

    Google Scholar 

  48. Kyrklund M, Kummu O, Kankaanpää J, Akhi R, Nissinen A, Turunen SP, et al. Immunization with gingipain A hemagglutinin domain of Porphyromonas gingivalis induces IgM antibodies binding to malondialdehyde-acetaldehyde modified low-density lipoprotein. PLoS One 2018;13(1):e0191216.

  49. Gonen A, Hansen LF, Turner WW, Montano EN, Que X, Rafia A, et al. Atheroprotective immunization with malondialdehyde-modified LDL is hapten specific and dependent on advanced MDA adducts: implications for development of an atheroprotective vaccine. J Lipid Res 2014;55:2137–55.

    Google Scholar 

  50. Baker JP. The pertussis vaccine controversy in Great Britain, 1974–1986. Vaccine 2003;21(25–26):4003–10.

    Google Scholar 

  51. Bronfin DR. Childhood immunization controversies: what are parents asking? Ochsner J 2008;8(3):151–6.

    Google Scholar 

  52. Donnelly S, Loscher CE, Lynch MA, Mills KH. Whole-cell but not acellular pertussis vaccines induce convulsive activity in mice: evidence of a role for toxin-induced interleukin-1beta in a new murine model for analysis of neuronal side effects of vaccination. Infect Immun 2001;69(7):4217–23.

    Google Scholar 

  53. Greco D, Salmaso S, Mastrantonio P, Giuliano M, Tozzi AE, Anemona A, et al. A controlled trial of two acellular vaccines and one whole-cell vaccine against pertussis. Progetto Pertosse Working Group. N Engl J Med 1996;334(6):341–8.

    Google Scholar 

  54. Hansen PR, Chew M, Zhou J, Daugherty A, Heegaard N, Jensen P, et al. Freunds adjuvant alone is antiatherogenic in apoE-deficient mice and specific immunization against TNFal-pha confers no additional benefit. Atherosclerosis 2001; 158(1):87–94.

    Google Scholar 

  55. Shi GP. Immunomodulation of vascular diseases: atherosclerosis and autoimmunity. Eur J Vasc Endovasc Surg 2010;39(4): 485–94.

    Google Scholar 

  56. Khallou-Laschet J, Tupin E, Caligiuri G, Poirier B, Thieblemont N, Gaston AT, et al. Atheroprotective effect of adjuvants in apolipoprotein E knockout mice. Atherosclerosis 2006;184(2):330–41.

    Google Scholar 

  57. Yamauchi T, Kuno T, Takada H, Nagura Y, Kanmatsuse K, Takahashi S. The impact of visceral fat on multiple risk factors and carotid atherosclerosis in chronic haemodialysis patients. Nephrol Dial Transplant 2003;18(9):1842–7.

    Google Scholar 

  58. Shively CA, Register TC, Clarkson TB. Social stress, visceral obesity, and coronary artery atherosclerosis: product of a primate adaptation. Am J Primatol 2009;71(9):742–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aditya Indra Mahendra, Teuku Heriansyah or Budi Susetio Pikir.

Rights and permissions

This is an open access article distributed under the CC BY-NC license. https://doi.org/creativecommons.org/licenses/by/4.0/

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahendra, A.I., Fajar, J.K., Harapan, H. et al. Porphyromonas gingivalis vesicles reduce MDA-LDL levels and aortic wall thickness in high fat diet induced atherosclerosis rats. Artery Res 23, 20–27 (2018). https://doi.org/10.1016/j.artres.2018.05.008

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.artres.2018.05.008

Keywords