Skip to main content
  • Review Article
  • Open access
  • Published:

Fetal programming and vascular dysfunction

Abstract

Cardiovascular diseases are the main cause of mortality and morbidity in Western countries, but the underlying mechanisms are still poorly understood. Genetic polymorphisms, once thought to represent a major determinant of cardiovascular risk, individually and collectively, only explain a tiny fraction of phenotypic variation and disease risk in humans. It is now clear that non-genetic factors, i.e., factors that modify gene activity without changing the DNA sequence and that are sensitive to the environment can cause important alterations of the cardiovascular phenotype in experimental animal models and humans. Here, we will review recent studies demonstrating that distinct pathological events during the perinatal (transient perinatal hypoxemia), late foetal (preeclampsia), and early embryonic (assisted reproductive technologies) periods induce profound alterations of the cardiovascular phenotype in humans and experimental animals. Moreover, we will provide evidence that epigenetic modifications are contributing importantly to this problem and are conferring the potential for its transmission to subsequent generations.

References

  1. Barker DJ. The fetal and infant origins of disease. Eur J Clin Investig 1995;25:457–63.

    Google Scholar 

  2. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986;1:1077–81.

    Google Scholar 

  3. Friedman AH, Fahey JT. The transition from fetal to neonatal circulation: normal responses and implications for infants with heart disease. Semin Perinatol 1993;17:106–21.

    Google Scholar 

  4. Hakim TS, Mortola JP. Pulmonary vascular resistance in adult rats exposed to hypoxia in the neonatal period. Can J Physiol Pharmacol 1990;68:419–24.

    Google Scholar 

  5. Sartori C, Allemann Y, Trueb L, Delabays A, Nicod P, Scherrer U. Augmented vasoreactivity in adult life associated with perinatal vascular insult. Lancet 1999;353:2205–7.

    Google Scholar 

  6. Davis EF, Lazdam M, Lewandowski AJ, Worton SA, Kelly B, Kenworthy Y, et al. Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics 2012;129:e1552–61.

    Google Scholar 

  7. Kajantie E, Eriksson JG, Osmond C, Thornburg K, Barker DJ. Pre-eclampsia is associated with increased risk of stroke in the adult offspring: the Helsinki birth cohort study. Stroke 2009; 40:1176–80.

    Google Scholar 

  8. Sartori C, Allemann Y, Scherrer U. Pathogenesis of pulmonary edema: learning from high-altitude pulmonary edema. Respir Physiol Neurobiol 2007;159:338–49.

    Google Scholar 

  9. Scherrer U, Sartori C, Lepori M, Allemann Y, Duplain H, Trueb L, et al. High-altitude pulmonary edema: from exaggerated pulmonary hypertension to a defect in transepithelial sodium transport. Adv Exp Med Biol 1999;474:93–107.

    Google Scholar 

  10. Charakida M, Deanfield JE, Halcox JP. Childhood origins of arterial disease. Curr Opin Pediatr 2007;19:538–45.

    Google Scholar 

  11. Urbina EM, Williams RV, Alpert BS, Collins RT, Daniels SR, Hayman L, et al. Noninvasive assessment of subclinical atherosclerosis in children and adolescents: recommendations for standard assessment for clinical research: a scientific statement from the American Heart Association. Hypertension 2009;54:919–50.

    Google Scholar 

  12. Seidman DS, Laor A, Gale R, Stevenson DK, Mashiach S, Danon YL. Pre-eclampsia and offspring’s blood pressure, cognitive ability and physical development at 17-years-of-age. Br J Obstet Gynaecol 1991;98:1009–14.

    Google Scholar 

  13. Vatten LJ, Romundstad PR, Holmen TL, Hsieh CC, Trichopoulos D, Stuver SO. Intrauterine exposure to preeclampsia and adolescent blood pressure, body size, and age at menarche in female offspring. Obstet Gynecol 2003;101: 529–33.

    Google Scholar 

  14. Jayet PY, Rimoldi SF, Stuber T, Salmon CS, Hutter D, Rexhaj E, et al. Pulmonary and systemic vascular dysfunction in young offspring of mothers with preeclampsia. Circulation 2010;122: 488–94.

    Google Scholar 

  15. Nyboe Andersen A, Erb K. Register data on Assisted Reproductive Technology (ART) in Europe including a detailed description of ART in Denmark. Int J Androl 2006;29:12–6.

    Google Scholar 

  16. Ghiadoni L, Versari D, Giannarelli C, Faita F, Taddei S. Noninvasive diagnostic tools for investigating endothelial dysfunction. Curr Pharm Des 2008;14:3715–22.

    Google Scholar 

  17. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 2006;27:2588–605.

    Google Scholar 

  18. Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N, et al. Mannheim carotid intima-media thickness consensus (2004–. An update on behalf of the Advisory Board of the 3rd and 4th Watching the Risk Symposium, 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis. 2007;23: 75–80.

    Google Scholar 

  19. Scherrer U, Rimoldi SF, Rexhaj E, Stuber T, Duplain H, Garcin S, et al. Systemic and pulmonary vascular dysfunction in children conceived by assisted reproductive technologies. Circulation 2012;125:1890–6.

    Google Scholar 

  20. Valenzuela-Alcaraz B, Crispi F, Bijnens B, Cruz-Lemini M, Creus M, Sitges M, et al. Assisted reproductive technologies are associated with cardiovascular remodeling in utero that persists postnatally. Circulation 2013;128:1442–50.

    Google Scholar 

  21. von Arx R, Allemann Y, Sartori C, Rexhaj E, Cerny D, de Marchi SF, et al. Right ventricular dysfunction in children and adolescents conceived by assisted reproductive technologies. J Appl Physiol 2015;118:1200–6.

    Google Scholar 

  22. Rexhaj E, Von Arx R, Cerny D, Soria R, Bouillet E, Sartori C, et al. Assisted reproductive technologies-induced premature vascular ageing persists and evolves into arterial hypertension in adolescents. FASEB J Conf Exp Biol 2015:29.

  23. Jarvisalo MJ, Raitakari M, Toikka JO, Putto-Laurila A, Rontu R, Laine S, et al. Endothelial dysfunction and increased arterial intima-media thickness in children with type 1 diabetes. Circulation 2004;109:1750–5.

    Google Scholar 

  24. Singh TP, Groehn H, Kazmers A. Vascular function and carotid intimal-medial thickness in children with insulin-dependent diabetes mellitus. J Am Coll Cardiol 2003;41:661–5.

    Google Scholar 

  25. Ceelen M, van Weissenbruch MM, Vermeiden JP, van Leeuwen FE, Delemarre-van de Waal HA. Cardiometabolic differences in children born after in vitro fertilization: followup study. J Clin Endocrinol Metab 2008;93:1682–8.

    Google Scholar 

  26. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429:457–63.

    Google Scholar 

  27. Razin A. CpG methylation, chromatin structure and gene silencing-a three-way connection. EMBO J 1998;17:4905–8.

    Google Scholar 

  28. Godfrey KM. The role of the placenta in fetal programming-a review. Placenta 2002;23(Suppl A):S20–7.

  29. Ingelfinger JR. Pathogenesis of perinatal programming. Curr Opin Nephrol Hypertens 2004;13:459–64.

    Google Scholar 

  30. Langley-Evans SC. Developmental programming of health and disease. Proc Nutr Soc 2006;65:97–105.

    Google Scholar 

  31. Gluckman PD, Hanson MA, Buklijas T, Low FM, Beedle AS. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat Rev Endocrinol 2009;5:401–8.

    Google Scholar 

  32. Rexhaj E, Paoloni-Giacobino A, Rimoldi SF, Fuster DG, Anderegg M, Somm E, et al. Mice generated by in vitro fertilization exhibit vascular dysfunction and shortened life span. J Clin Investig 2013;123:5052–60.

    Google Scholar 

  33. Chan Y, Fish JE, D’Abreo C, Lin S, Robb GB, Teichert AM, et al. The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation. J Biol Chem 2004;279:35087–100.

    Google Scholar 

  34. Duplain H, Burcelin R, Sartori C, Cook S, Egli M, Lepori M, et al. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation 2001; 104:342–5.

    Google Scholar 

  35. Miyamoto Y, Saito Y, Kajiyama N, Yoshimura M, Shimasaki Y, Nakayama M, et al. Endothelial nitric oxide synthase gene is positively associated with essential hypertension. Hypertension 1998;32:3–8.

    Google Scholar 

  36. Unfer V, Raffone E, Rizzo P, Buffo S. Effect of a supplementation with myo-inositol plus melatonin on oocyte quality in women who failed to conceive in previous in vitro fertilization cycles for poor oocyte quality: a prospective, longitudinal, cohort study. Gynecol Endocrinol 2011;27:857–61.

    Google Scholar 

  37. Korkmaz A. Epigenetic actions of melatonin. J Pineal Res 2009; 46:117–8.

    Google Scholar 

  38. Niles LP, Pan Y, Kang S, Lacoul A. Melatonin induces histone hyperacetylation in the rat brain. Neurosci Lett 2013;541: 49–53.

    Google Scholar 

  39. Tamura H, Takasaki A, Miwa I, Taniguchi K, Maekawa R, Asada H, et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res 2008;44:280–7.

    Google Scholar 

  40. Rexhaj E, Pireva A, Paoloni-Giacobino A, Allemann Y, Cerny D, Dessen P, et al. Prevention of vascular dysfunction and arterial hypertension in mice generated by assisted reproductive technologies by addition of melatonin to culture media. Am J Physiol Heart Circ Physiol 2015;309:H1151–6.

    Google Scholar 

  41. Scherrer U, Sartori C. Insulin as a vascular and sympathoexcitatory hormone: implications for blood pressure regulation, insulin sensitivity, and cardiovascular morbidity. Circulation 1997;96:4104–13.

    Google Scholar 

  42. Cook S, Hugli O, Egli M, Menard B, Thalmann S, Sartori C, et al. Partial gene deletion of endothelial nitric oxide synthase predisposes to exaggerated high-fat diet-induced insulin resistance and arterial hypertension. Diabetes 2004;53:2067–72.

    Google Scholar 

  43. Cerny D, Sartori C, Rimoldi SF, Meister T, Soria R, Bouillet E, et al. Assisted reproductive technologies predispose to insulin resistance and obesity in male mice challenged with a high fat diet. Endocrinology 2017;158(5):1152–9.

    Google Scholar 

  44. Chen M, Wu L, Zhao J, Wu F, Davies MJ, Wittert GA, et al. Altered glucose metabolism in mouse and humans conceived by IVF. Diabetes 2014;63:3189–98.

    Google Scholar 

  45. Rimoldi SF, Sartori C, Rexhaj E, Bailey DM, de Marchi SF, McEneny J, et al. Antioxidants improve vascular function in children conceived by assisted reproductive technologies: a randomized double-blind placebo-controlled trial. Eur J Prev Cardiol 2015;22:1399–407.

    Google Scholar 

  46. Roth GA, Huffman MD, Moran AE, Feigin V, Mensah GA, Naghavi M, et al. Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation 2015;132:1667–78.

    Google Scholar 

  47. Ingelfinger JR. Prematurity and the legacy of intrauterine stress. N Engl J Med 2007;356:2093–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sartori.

Rights and permissions

This is an open access article distributed under the CC BY-NC license. https://doi.org/creativecommons.org/licenses/by/4.0/

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meister, T.A., Rexhaj, E., Rimoldi, S.F. et al. Fetal programming and vascular dysfunction. Artery Res 21, 69–77 (2018). https://doi.org/10.1016/j.artres.2017.11.005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.artres.2017.11.005

Keywords