Skip to main content
  • Research Article
  • Open access
  • Published:

Viscoelastic mechanical measurement of the healthy and atherosclerotic human coronary arteries using DIC technique

Abstract

Purpose

Atherosclerotic is a specific form of vascular disease showed to be in charge of the 30% of mortalities in the United States alone. Many studies so far have been reported on the linear and nonlinear mechanical properties of the human and animal coronary arteries. However, the Quasilinear Viscoelastic (QLV) mechanical behavior of the healthy and atherosclerotic human coronary arteries have not been well quantified in spite of the time-dependent mechanical behavior of the arterial walls. This study was aimed to set up a new relaxation viscoelastic tests to characterize the QLV parameters of the healthy and atherosclerotic human coronary arteries.

Methods

Ten healthy and atherosclerotic human coronary arteries were subjected to relaxation test and the QLV parameters were calculated by comparing the QLV model to that of stress-relaxation data.

Results

The findings showed the highest stress in the atherosclerotic coronary samples (292.02 ± 18.14 kPa) (Mean ± SD) which is found to be higher than that of the healthy ones (18.12 ± 2.88 kPa) (p < 0.05). In addition, the stress-relaxation diagrams showed that the healthy coronary arteries can reach to a balance in slightly a lower time (1400 ± 24.15 sec) compared to the atherosclerotic ones (1800 ± 38.12 sec) (p < 0.05).

Conclusions

These data might provide a deep understanding not only for the viscoelastic time dependent mechanical behavior of the healthy and atherosclerotic human coronary arteries but also for the biomechanical experts in different fields of research including, tissue engineering, intervention and bypass surgery and stenting.

References

  1. Pankow JS, Boerwinkle E, Adams PC, Guallar E, Leiendecker-Foster C, Rogowski J, et al. HFE C282Y homozygotes have reduced low-density lipoprotein cholesterol: the Atherosclerosis Risk in Communities (ARIC) Study. Transl Res 2008;152(1): 3–10.

    Google Scholar 

  2. Bruning RS, Sturek M. Benefits of exercise training on coronary blood flow in coronary artery disease patients. Prog Cardiovasc Dis 2015;57(5):443–53.

    Google Scholar 

  3. Abdi M, Karimi A. A computational electrical analogy model to evaluate the effect of internal carotid artery stenosis on circle of willis efferent arteries pressure. J Biomater Tissue Eng 2014;4(9):749–54.

    Google Scholar 

  4. Karimi A, Navidbakhsh M, Razaghi R. A finite element study of balloon expandable stent for plaque and arterial wall vulnerability assessment. J Appl Phys 2014;116(4):044701–10.

    Google Scholar 

  5. Karimi A, Navidbakhsh M, Yamada H, Razaghi R. A nonlinear finite element simulation of balloon expandable stent for assessment of plaque vulnerability inside a stenotic artery. Med Biol Eng Comput 2014:1–11.

  6. Karimi A, Navidbakhsh M, Shojaei A, Faghihi S. Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries. Mater Sci Eng C 2013;33(5): 2550–4.

    Google Scholar 

  7. Kural MH, Cai M, Tang D, Gwyther T, Zheng J, Billiar KL. Planar biaxial characterization of diseased human coronary and carotid arteries for computational modeling. J Biomech 2012; 45(5):790–8.

    Google Scholar 

  8. Ooi CY, Sutcliffe MPF, Davenport AP, Maguire JJ. Changes in biomechanical properties of the coronary artery wall contribute to maintained contractile responses to endothelin-1 in atherosclerosis. Life Sci 2014;118(2):424–9.

    Google Scholar 

  9. Ozolanta I, Tetere G, Purinya B, Kasyanov V. Changes in the mechanical properties, biochemical contents and wall structure of the human coronary arteries with age and sex. Med Eng Phys 1998;20(7):523–33.

    Google Scholar 

  10. Karimi A, Navidbakhsh M, Faghihi S, Shojaei A, Hassani K. A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries. Proc Inst Mech Eng H 2013;227(2):148–61.

    Google Scholar 

  11. Karimi A, Navidbakhsh M, Shojaei A. A combination of histological analyses and uniaxial tensile tests to determine the material coefficients of the healthy and atherosclerotic human coronary arteries. Tissue Cell 2015;47(2):152–8.

    Google Scholar 

  12. Karimi A, Navidbakhsh M, Shojaei A, Hassani K, Faghihi S. Study of plaque vulnerability in coronary artery using MooneyeRivlin model: acombination of finite element and experimental method. Biomed Eng Appl Basis Commun 2014;26(01):1450013–20.

    Google Scholar 

  13. Karimi A, Rahmati SM, Sera T, Kudo S, Navidbakhsh M. A combination of experimental and numerical methods to investigate the role of strain rate on the mechanical properties and collagen fiber orientations of the healthy and atherosclerotic human coronary arteries. Bioengineered 2016. http://doi.org/10.1080/21655979.2016.1212134. Published online: 02 Sep. 2016.

  14. Holzapfel GA, Gasser TC, Stadler M. A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur J Mech - A/Solids 2002;21(3): 441–63.

    Google Scholar 

  15. Fung Y. Biomechanics: mechanical properties of living tissues. New York: Spinger-Verlag; 1993.

  16. Carew E, Talman E, Boughner D, Vesely I. Quasi-linear viscoelastic theory applied to internal shearing of porcine aortic valve leaflets. J Biomech Eng 1999;121(4):386–92.

    Google Scholar 

  17. Drapaca C, Tenti G, Rohlf K, Sivaloganathan S. A quasi-linear viscoelastic constitutive equation for the brain: application to hydrocephalus. J Elast 2006;85(1):65–83.

    Google Scholar 

  18. Laksari K, Shafieian M, Darvish K. Constitutive model for brain tissue under finite compression. J Biomech 2012;45(4):642–6.

    Google Scholar 

  19. Lamela M, Prado Y, Fernandez P, Fernández-Canteli A, Tanaka E. Non-linear viscoelastic model for behavior characterization of temporomandibular joint discs. Exp Mech 2011; 51(8):1435–40.

    Google Scholar 

  20. Karimi A, Navidbakhsh M. A comparative study on the uniaxial mechanical properties of the umbilical vein and umbilical artery using different stressestrain definitions. Australas Phys Eng Sci Med 2014;37(4):645–54.

    Google Scholar 

  21. Barati E, Halabian M, Karimi A, Navidbakhsh M. Numerical evaluation of stenosis location effects on hemodynamics and shear stress through curved artery. J Biomater Tissue Eng 2014; 4(5):358–66.

    Google Scholar 

  22. Halabian M, Karimi A, Beigzadeh B, Navidbakhsh M. A numerical study on the hemodynamic and shear stress of double aneurysm through s-shaped vessel. Biomed Eng Appl Basis Commun 2015;27(4):1550033–43.

    Google Scholar 

  23. Karimi A, Navidbakhsh M, Faghihi S. Measurement of the mechanical failure of PVA sponge using biaxial puncture test. J Biomater Tissue Eng 2014;4(1):46–50.

    Google Scholar 

  24. Karimi A, Rahmati SM, Sera T, Kudo S, Navidbakhsh M. A combination of experimental and numerical methods to investigate the role of strain rate on the mechanical properties and collagen fiber orientations of the healthy and atherosclerotic human coronary arteries. Bioengineered 2016:1–17. http://doi.org/10.1080/21655979.2016.1212134.

  25. Karimi A, Navidbakhsh M, Rahmati SM, Sera T, Kudo S. A combination of constitutive damage model and Artificial Neural Networks to characterize the mechanical properties of the healthy and atherosclerotic human coronary arteries. Artif Organs 2016. http://doi.org/10.1111/aor.12855. In Press.

  26. Karimi A, Navidbakhsh M, Motevalli Haghi A. An experimental study on the structural and mechanical properties of polyvinyl alcohol sponge using different stress-strain definitions. Adv Polym Tech 2014;33(S1):21441–9.

    Google Scholar 

  27. Karimi A, Navidbakhsh M, Shojaei A, Hassani K, Faghihi S. Study of plaque vulnerability in coronary artery using Mooney-Rivlin model: a combination of finite element and experimental method. Biomed Eng Appl Basis Commun 2014;26(4):145–52.

    Google Scholar 

  28. Karimi A, Navidbakhsh M. Measurement of the nonlinear mechanical properties of PVA sponge under longitudinal and circumferential loading. J Appl Polym Sci 2013;131(10): 40257–64.

    Google Scholar 

  29. Faghihi S, Karimi A, Jamadi M, Imani R, Salarian R. Graphene oxide/poly(acrylic acid)/gelatin nanocomposite hydrogel: experimental and numerical validation of hyperelastic model. Mater Sci Eng C 2014;38(0):299–305.

    Google Scholar 

  30. Razaghi R, Karimi A, Rahmani S, Navidbakhsh M. A computational fluidestructure interaction model of the blood flow in the healthy and varicose saphenous vein. Vascular 2016;24(3). 254–253.

  31. Gimbel JA, Sarver JJ, Soslowsky LJ. The effect of overshooting the target strain on estimating isolating properties from stress relaxation experiments. J Biomech Eng 2004;126(6):844–8.

    Google Scholar 

  32. Abramowitch S, Woo S. An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory. J Biomech Eng 2004;126(1):92–7.

    Google Scholar 

  33. Faghihi S, Gheysour M, Karimi A, Salarian R. Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels. J Appl Phys 2014;115(8).

  34. Karimi A, Navidbakhsh M, Beigzadeh B. A visco-hyperelastic constitutive approach for modeling polyvinyl alcohol sponge. Tissue Cell 2014;46(1):97–102.

    Google Scholar 

  35. Karimi A, Navidbakhsh M. Mechanical properties of polyvinyl alcohol sponge under different strain rates. Int J Mater Res 2014;105(4):404–8.

    Google Scholar 

  36. Karimi A, Navidbakhsh M, Alizadeh M, Shojaei A. A comparative study on the mechanical properties of the umbilical vein and umbilical artery under uniaxial loading. Artery Res 2014;8(2):51–6.

    Google Scholar 

  37. Karimi A, Kudo S, Navidbakhsh M, Razaghi R. A combination of experimental and numerical analyses to measure the compressive mechanical properties of tennis ball. Biomed Eng Appl Basis Commun 2015;27(4):1550039–46.

    Google Scholar 

  38. Fung Y. Elasticity of soft tissues in simple elongation. Am J Physiol 1967;213(6):1532–44.

    Google Scholar 

  39. Fung Y. Stress-strain-history relations of soft tissues in simple elongation. In: Fung Y, Perrone N, Anliker M, editors. Biomechanics, its foundations and objectives. Englewood Cliffs: Prentice-Hall; 1972. p. 181–208.

  40. Kwan MK, Lin THC, Woo SLY. On the viscoelastic properties of the anteromedial bundle of the anterior cruciate ligament. J Biomech 1993;26(4e5):447–52.

    Google Scholar 

  41. Lucas SR, Bass CR, Salzar RS, Oyen ML, Planchak C, Ziemba A, et al. Viscoelastic properties of the cervical spinal ligaments under fast strain-rate deformations. Acta Biomater 2008;4(1): 117–25.

    Google Scholar 

  42. Toms SR, Dakin GJ, Lemons JE, Eberhardt AW. Quasi-linear viscoelastic behavior of the human periodontal ligament. J Biomech 2002;35(10):1411–5.

    Google Scholar 

  43. Troyer KL, Puttlitz CM. Human cervical spine ligaments exhibit fully nonlinear viscoelastic behavior. Acta Biomater 2011;7(2): 700–9.

    Google Scholar 

  44. Lucas S, Bass C, Crandall J, Kent R, Shen F, Salzar R. Viscoelastic and failure properties of spine ligament collagen fascicles. Biomech Model Mechanobiol 2009;8(6):487–98.

    Google Scholar 

  45. Rajagopal KR, Srinivasa AR, Wineman AS. On the shear and bending of a degrading polymer beam. Int J Plast 2007;23(9): 1618–36.

    Google Scholar 

  46. Hayashi K. Experimental approaches on measuring the mechanical properties and constitutive laws of arterial walls. J Biomech Eng 1993;115(4B):481–8.

    Google Scholar 

  47. Karimi A, Navidbakhsh M, Razaghi R. Dynamic simulation and finite element analysis of the human mandible injury protected by polyvinyl alcohol sponge. Mater Sci Eng C 2014;42(0): 608–14.

    Google Scholar 

  48. Karimi A, Sera T, Kudo S, Navidbakhsh M. Experimental verification of the healthy and atherosclerotic coronary arteries incompressibility via Digital Image Correlation. Artery Res 2016;16:1–7.

    Google Scholar 

  49. Vogel HG. Influence of maturation and aging on mechanical and biochemical properties of connective tissue in rats. Mech Ageing Dev 1980;14(3–4):283–92.

    Google Scholar 

  50. Mu¨nster S, Jawerth LM, Leslie BA, Weitz JI, Fabry B, Weitz DA. Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proc Natl Acad Sci U. S. A 2013; 110(30):12197–202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Karimi.

Rights and permissions

This is an open access article distributed under the CC BY-NC license. https://doi.org/creativecommons.org/licenses/by/4.0/

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, A., Shojaei, A. & Razaghi, R. Viscoelastic mechanical measurement of the healthy and atherosclerotic human coronary arteries using DIC technique. Artery Res 18, 14–21 (2017). https://doi.org/10.1016/j.artres.2017.02.004

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.artres.2017.02.004

Keywords