Skip to main content
  • Research Article
  • Open access
  • Published:

Acute effect of coffee consumption on arterial stiffness, evaluated using an oscillometric method

Abstract

Introduction

Previous studies show contradictory results related to the vascular effects of coffee; they suggest that caffeine increases arterial stiffness and negatively impacts vascular health, the aim of this study is to evaluate the acute coffee effects on the vascular stiffness.

Methods and materials

We carried out a controlled, blind, cohort study in healthy subjects. The acute effect of coffee (caffeinated vs. decaffeinated) was evaluated on arterial stiffness parameters, using a oscillometric method known as Arteriograph® (TensioMed-Budapest-Hungary, Ltd.). Each subject received 14 gr. of caffeinated excelso-coffee (caffeine-151.2 mg) and decaffeinated excelso-coffee (caffeine-3.92 mg), two weeks apart in a random order. The parameters were obtained under stable baseline conditions before drinking the coffee, 30 and 60 min later.

Results

Thirty-two subjects were included, with an age of 46.2 ± 10.4 years, sixteen men. Consumption of caffeinated-coffee at 30 and 60 min increased statistically significant (p < 0.05) brachial-systolic-blood-pressure in 3.9 mmHg and 3.8 mmHg, brachial-diastolic-blood-pressure in 4.1 mmHg and 3.2 mmHg, mean-arterial-pressure in 4.0 mmHg and 3.3 mmHg, central-systolic-blood-pressure in 5.8 mmHg and 7.6 mmHg, brachial-AIX 9.9% and 12.3%, aortic-AIX 5.1% and 6.3%, decreased heart-rate by 4 beats/min and 5 beats/min respectively, and it not demonstrated that had an impact on the pulse wave velocity (p = 0.861). Decaffeinated-coffee increased the braquial-AIX (7.1–10.5%) and aortic-AIX (3.55–5.3%) and decreased the heart-rate (3–4 beats/min).

Conclusions

This study suggests for the first time that drinking caffeinated coffee slightly increases peripheral arterial stiffness at the expense of increased vascular tone in distal arteries without changes in central stiffness. Further studies are needed to clarify whether these effects induced by coffee have an impact on the population health.

References

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive summary: heart disease and stroke statistics—2016 update a report from the American Heart Association. Circulation 2016;133:447–54.

    Google Scholar 

  2. Dalen JE, Devries S. Diets to prevent coronary heart disease 1957–2013: what have we learned? Am J Med 2014;127:364–9.

    Google Scholar 

  3. Donovan JL, DeVane CL. A primer on caffeine pharmacology and its drug interactions in clinical psychopharmacology. Psychopharmacol Bull 2001;35(3):30–48.

    Google Scholar 

  4. Baylin A, Hernandez-Diaz S, Kabagambe EK, Siles X, Campos H. Transient exposure to coffee as a trigger of a first nonfatal myocardial infarction. Epidemiology 2006;17:506–11.

    Google Scholar 

  5. LaCroix AZ, Mead LA, Liang KY, Thomas CB, Pearson TA. Coffee consumption and the incidence of coronary heart disease. N Engl J Med 1986;315(16):977–82.

    Google Scholar 

  6. Freedman ND, Park Y, ChC Abnet, Hollenbeck AR, Sinha R. Association of coffee drinking with total and cause-specific mortality. N Engl J Med 2012;366:1891–904.

    Google Scholar 

  7. Gonzalez de Mejia E, Ramirez-Mares MV. Impact of caffeine and coffee on our health. Trends Endocrinol Metab 2014;XX:1–4.

  8. Guessous I, ChB Eap, Bochud M. Blood pressure in relation to coffee and caffeine consumption. Curr Hypertens Rep 2014; 16:468–77.

    Google Scholar 

  9. Sugiyama K, Kuriyama S, Akhter M, Kakizaki M, Nakaya N, Ohmori-Matsuda K, et al. Coffee consumption and mortality due to all causes, cardiovascular disease, and cancer in Japanese women. J Nutr 2010;140(5):1007–13.

    Google Scholar 

  10. U.S. Department of Health and Human Services (HHS), U.S. Department of Agriculture (USDA). Scientific report of the 2015 dietary Guidelines advisory committeevol. 5; 2015. p. 12–66. health.gov/dietaryguidelines/2015-scientific-report.

  11. Van Dam RM, Hu FB. Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA 2005;294(1):97–104.

    Google Scholar 

  12. Crippa A, Discacciati A, Larsson SC, Wolk A, Orsini N. Coffee consumption and mortality from all causes, cardiovascular disease, and cancer: a dose-response meta-analysis. Am J Epidemiol 2014;180(8):763–75.

    Google Scholar 

  13. Je Y, Giovannucci E. Coffee consumption and total mortality: a meta-analysis of twenty prospective cohort studies. Br J Nutr 2014;111(7):1162–73.

    Google Scholar 

  14. Malerba S, Turati F, Galeone C, Pelucchi C, Verga F, La Vecchia C, et al. A meta-analysis of prospective studies of coffee consumption and mortality for all causes, cancers and cardiovascular diseases. Eur J Epidemiol 2013;28(7):527–39.

    Google Scholar 

  15. Echeverri D, Buitrago L, Delgadillo A, Beltrán M, Montes F. Efecto vasodilatador in-vitro de la cafeína en aorta de conejos ateroscleróticos. Clin Invest Arter 2008;20(2):41–7.

    Google Scholar 

  16. Echeverri D, Montes FR, Delgadillo A, Beltrán M, Buitrago L. Acción in-vitro de la cafeína en anillos de arteria mamaria interna utilizada en cirugía de revascularización cardiaca. Biomédica 2008;28:298–304.

    Google Scholar 

  17. Montes FR, Cabrera M, Delgadillo A, Salgar C, Echeverri D. The role of potassium channels in the vasodilatory effect of caffeine in human internal mammary arteries. Vasc Pharmacol 2009;50:132–6.

    Google Scholar 

  18. Echeverri D, Montes FR, Cabrera M, Galán A, Prieto A. Caffeine’s vascular mechanisms of action. Int J Vasc Med 2010; 2010:834060.

  19. Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, Cockcroft JR, et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a Scientific Statement from the American Heart Association. Hypertension 2015;66(3):698–722.

    Google Scholar 

  20. Nichols WW, O’Rourke MF, Ch Vlachopoulos. In: McDonald’s blood flow in arteries theoretical, experimental and clinical principles. 6th ed. CRC Press; 2011. p. 569–78.

  21. Vlachopoulos C, Xaplanteris P, Aboyans V, Brodmann M, Cífková R, Cosentino F, et al. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation: endorsed by the Association for Research into Arterial Structure and Physiology (ARTERY) Society. Atherosclerosis 2015;241(2):507–32.

    Google Scholar 

  22. Blacher J, Asmar R, Djane S, London GM, Safar ME. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension 1999;33:1111–7.

    Google Scholar 

  23. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 2001;37:1236–41.

    Google Scholar 

  24. Stefanadis C, Dernellis J, Tsiamis E, Stratos C, Diamantopoulos L, Michaelides A, et al. Aortic stiffness as a risk factor for recurrent acute coronary events in patients with ischaemic heart disease. Eur Heart J 2000;21:390–6.

    Google Scholar 

  25. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, et al. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol 2014;63:636–46.

    Google Scholar 

  26. Sakuragi S, Abhayaratna WP. Arterial stiffness: methods of measurement, physiologic determinants and prediction of cardiovascular outcomes. Int J Cardiol 2010;138:112–8.

    Google Scholar 

  27. Pincomb GA, Lovallo WR, McKey BS, Sung BH, Passey RB, Everson SA, et al. Acute blood pressure elevations with caffeine in men with borderline systemic hypertension. Am J Cardiol 1996;77:270–4.

    Google Scholar 

  28. Illyez M. A new and fast screening method for measuring complex hemodynamical parameters and arterial stiffness non-invasively with a simple arm cuff. Am J Hypertens 2005;18(5). Part2:15A.

  29. Baulmann J, Schillings U, Rickert S, Uen S, Düsing R, Illyes M, et al. A new oscillometric method for assessment of arterial stiffness: comparison with tonometric and piezo-electronic methods. J Hypertens 2008;26(3):523–8.

    Google Scholar 

  30. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1(8476):307–10.

    Google Scholar 

  31. Safar ME. Pulse pressure, arterial stiffness, and cardiovascular risk. Curr Opin Cardiol 2000;15:258–63.

    Google Scholar 

  32. Dart AM, Kingwell BA. Pulse pressure a review of mechanisms and clinical relevance. J Am Coll Cardiol 2001;37:975–84.

    Google Scholar 

  33. Klassen PS, Lowrie EG, Reddan DN, Coladonato JA, Szczech LA, Lazarus JM, et al. Association between pulse pressure and mortality in patients undergoing maintenance hemodialysis. JAMA 2002;27(287):1548–55.

    Google Scholar 

  34. Meeks WM. Pathophysiology of hypertension in the elderly. Semin Nephrol 2002;22:65–70.

    Google Scholar 

  35. Mackey RH, Sutton-Tyrrell K, Vaitkevicius PV, Sakkinen PA, Lyles MF, Spurgeon HA, et al. Correlates of aortic stiffness in elderly individuals: a subgroup of the Cardiovascular Health Study. Am J Hypertens 2002;15:16–23.

    Google Scholar 

  36. Meaume S, Rudnichi A, Lynch A, Bussy C, Sebban C, Benetos A, et al. Aortic pulse wave velocity as a marker of cardiovascular disease in subjects over 70 years old. J Hypertens 2001;19:871–7.

    Google Scholar 

  37. Franklin SS, Larson MG, Khan SA, Wong ND, Leip EP, Kannel WB, et al. Does the relation of blood pressure to coronary heart disease risk change with aging? The Framingham Heart Study. Circulation 2001;103:1245–9.

    Google Scholar 

  38. Gatzka CD, Cameron JD, Kingwell BA, Dart AM. Relation between coronary artery disease, aortic stiffness, and left ventricular structure in a population sample. Hypertension 1998; 32:575–8.

    Google Scholar 

  39. Hirai T, Sasayama S, Kawasaki T, Yagi S. Stiffness of systemic arteries in patients with myocardial infarction. A noninvasive method to predict severity of coronary atherosclerosis. Circulation 1989;80:78–86.

    Google Scholar 

  40. Nichols WW, Pepine CJ. Ventricular/vascular interaction in health and heart failure. Compr Ther 1992;18:12–9.

    Google Scholar 

  41. Van Bortel LM, Struijker-Boudier HA, Safar ME. Pulse pressure, arterial stiffness, and drug treatment of hypertension. Hypertension 2001;38:914–21.

    Google Scholar 

  42. Boutouyrie P, Tropeano AI, Asmar R, Gautier I, Benetos A, Lacolley P, et al. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension 2002;39:10–5.

    Google Scholar 

  43. Benetos A, Adamopoulos C, Bureau JM, Temmar M, Labat C, Bean K, et al. Determinants of accelerated progression of arterial stiffness in normotensive subjects and in treated hypertensive subjects over a 6-year period. Circulation 2002; 105:1202–7.

    Google Scholar 

  44. Franklin SS, Gustin 4th W, Wong ND, Larson MG, Weber MA, Kannel WB, et al. Hemodynamic patterns of age-related changes in blood pressure. The Framingham Heart Study. Circulation 1997;96:308–15.

    Google Scholar 

  45. Lehmann ED, Hopkins KD, Jones RL, Rudd AG, Gosling RG. Aortic distensibility in patients with cerebrovascular disease. Clin Sci (Colch) 1995;89:247–53.

    Google Scholar 

  46. Wilkinson IB, MacCallum H, Rooijmans DF, Murray GD, Cockcroft JR, Mc- Knight JA, et al. Increased augmentation index and systolic stress in type 1 diabetes mellitus. Q J Med 2000;93:441–8.

    Google Scholar 

  47. Tozawa M, Iseki K, Iseki C, Takishita S. Pulse pressure and risk of total mortality and cardiovascular events in patients on chronic hemodialysis. Kidney Int 2002;61:717–26.

    Google Scholar 

  48. Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM, et al. Impact of aortic stiffness on survival in end-stage renal disease. Circulation 1999;99:2434–9.

    Google Scholar 

  49. Wilkinson IB, Prasad K, Hall IR, Thomas A, MacCallum H, Webb DJ, et al. Increased central pulse pressure and augmentation index in subjects with hypercholesterolemia. J Am Coll Cardiol 2002;39:100510–1.

    Google Scholar 

  50. Boutouyrie P, Bussy C, Lacolley P, Girerd X, Laloux B, Laurent S, et al. Association between local pulse pressure, mean blood pressure, and large-artery remodeling. Circulation 1999;100:1387–93.

    Google Scholar 

  51. Nakayama Y, Tsumura K, Yamashita N, Yoshimaru K, Hayashi T, et al. Pulsatility of ascending aortic pressure waveform is a powerful predictor of restenosis after percutaneous transluminal coronary angioplasty. Circulation 2000;101:470–2.

    Google Scholar 

  52. Waddell TK, Dart AM, Medley TL, Cameron JD, Kingwell BA. Carotid pressure is a better predictor of coronary artery disease severity than brachial pressure. Hypertension 2001;38:927–31.

    Google Scholar 

  53. Asmar RG, London GM, O’Rourke ME, Mallion JM, Romero R, Rahn KH. Amelioration of arterial properties with a perindopril-indapamide very-low-dose combination. J Hypertens Suppl 2001;19(4):S15–20.

  54. Asmar RG, London GM, O’Rourke ME, Safar ME. Improvement in blood pressure, arterial stiffness and wave reflections with a very-low-dose perindopril/indapamide combination in hypertensive patient: a comparison with atenolol. Hypertension 2001;38:922–6.

    Google Scholar 

  55. O’Rourke MF. Wave travel and reflection in the arterial system. J Hypertens 1999;17(5):S45–7.

  56. O’Rourke MF, Gallagher DE. Pulse wave analysis. J Hypertens Suppl 1996;14:S147–57.

    Google Scholar 

  57. Marchais SJ, Guerin AP, Pannier BM, Levy BI, Safar ME, London GM. Wave reflections and cardiac hypertrophy in chronic uremia. Influence of body size. Hypertension 1993;22:876–83.

    Google Scholar 

  58. London GM, Pannier B, Vicaut E, Guérin AP, Marchais SJ, Safar ME, et al. Antihypertensive effects and arterial haemodynamic alterations during angiotensin converting enzyme inhibition. J Hypertens 1996;14:1139–46.

    Google Scholar 

  59. Pauca AL, O’Rourke MF, Kon ND. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure wave-form. Hypertension 2001;38:932–7.

    Google Scholar 

  60. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 2006;113:1213–25.

    Google Scholar 

  61. Williams B. Pulse wave analysis and hypertension: evangelism versus skepticism. J Hypertens 2004;22:447–9.

    Google Scholar 

  62. O’Rourke MF, Nichols WW, Safar ME. Pulse waveform analysis and arterial stiffness: realism can replace evangelism and skepticism. J Hypertens 2004;22:1633–4.

    Google Scholar 

  63. Lim HE, Park CG, Shin SH, Ahn JC, Seo HS, Oh DJ. Aortic pulse wave velocity as an independent marker of coronary artery disease. Blood Press 2004;13:369–75.

    Google Scholar 

  64. Meaume S, Benetos A, Henry OF, Rudnichi A, Safar ME. Aortic pulse wave velocity predicts cardiovascular mortality in subjects >70 years of age. Arterioscler Thromb Vasc Biol 2001;21:2046–50.

    Google Scholar 

  65. Vlachopoulos C, O’Rourke MF. Genesis of the normal and abnormal arterial pulse. Curr Probl Cardiol 2000;5:299–367.

    Google Scholar 

  66. Rakic V, Burke V, Beilin LJ. Effects of coffee on ambulatory blood pressure in older men and women: a randomized controlled trial. Hypertension 1999;33:869–73.

    Google Scholar 

  67. Jee SH, He J, Whelton PK, Suh I, Klag MJ. The effect of chronic coffee drinking on blood pressure. A meta-analysis of controlled clinical trials. Hypertension 1999;33:647–52.

    Google Scholar 

  68. Mahmud A, Feeley J. Acute effect of caffeine on arterial stiffness and aortic pressure waveform. Hypertension 2001;38:227–31.

    Google Scholar 

  69. Vlachopoulos C, Hirata K, O’Rourke M. Pressure-altering agents affect central aortic pressures more than is apparent from upper limb measurements in hypertensive patients: the role of arterial wave reflections. Hypertension 2001;38:1456–60.

    Google Scholar 

  70. Vlachopoulos C, Hirata K, O’Rourke MF. Effect of caffeine on aortic elastic properties and wave reflection. J Hypertens 2003;21(3):563–70.

    Google Scholar 

  71. Vlachopoulos C, Hirata K, Ch Stefanadis, Toutouzas P, O’Rourke MF. Caffeine increases aortic stiffness in hypertensive patients. Am J Hypertens 2003;16:63–6.

    Google Scholar 

  72. Vlachopoulos C, Panagiotakos D, Ioakeimidis N, Dima I, Ch Stefanidis. Chronic coffee consumption has a detrimental effect on aortic stiffness and wave reflections. Am J Clin Nutr 2005;81:1307–12.

    Google Scholar 

  73. Vlachopoulos C, Vyssoulis GG, Alexopoulos NA, Zervoudaki AI, Pietri PG, Aznaouridis KA, et al. Effect of chronic coffee consumption on aortic stiffness and wave reflections in hypertensive patients. Eur J Clin Nutr 2007;61:796–802.

    Google Scholar 

  74. Agabiti-Rosei E, Mancia G, O’Rourke MF, Roman MJ, Safar ME, Smulyan H, et al. Central blood pressure measurements and antihypertensive therapy: a consensus document. Hypertension 2007;50(1):154–60.

    Google Scholar 

  75. McEniery CM, Yasmin, Hall IR, Qasem A, Wilkinson IB, Cockcroft JR. ACCT Investigators. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol 2005;46:1753–60.

    Google Scholar 

  76. Corti R, Binggeli C, Sudano I, Spieker L, Hänseler E, Ruschitzka F, et al. Coffee acutely increases sympathetic nerve activity and blood pressure independently of caffeine content: role of habitual versus nonhabitual drinking. Circulation 2002; 106(23):2935–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Pizano.

Rights and permissions

This is an open access article distributed under the CC BY-NC license. https://doi.org/creativecommons.org/licenses/by/4.0/

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Echeverri, D., Pizano, A., Montes, F.R. et al. Acute effect of coffee consumption on arterial stiffness, evaluated using an oscillometric method. Artery Res 17, 16–32 (2017). https://doi.org/10.1016/j.artres.2017.01.001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.artres.2017.01.001

Keywords