Skip to main content

Application of non-invasive central aortic pressure assessment in clinical trials: Clinical experience and value

Abstract

Pressure measured with a cuff and sphygmomanometer in the brachial artery is accepted as an important predictor of future cardiovascular (CV) events. However, recent clinical evidence suggests that central aortic pressure (CAP) provides additional information for assessing CV risk than brachial blood pressure (BrBP). Central hemodynamics can now be non-invasively assessed with a number of devices, however, the methodology employed to measure CAP, in order to better identify the patients at higher CV risk in clinical practice, is still controversial. The purpose of this article is to review the technology behind the non-invasive measurement of CAP via the effects of different classes of antihypertensive drugs on CAP and the data supporting the predictive value of assessing CAP on clinical outcomes, and to foster the transfer of methodological knowledge from clinical trials into routine clinical practice.

References

  1. Law M, Wald N, Morris J. Lowering blood pressure to prevent myocardial infarction and stroke: a new preventive strategy. Health Technol Assess 2003;7:1–94.

    Google Scholar 

  2. Nichols WW, O’Rourke MF. In: McDonald’s blood flow in arteries. Theoretical, experimental and clinical principles. 5th Ed. London: Arnold E; 2005. p. 166–267.

    Google Scholar 

  3. Williams B, Lacy PS. Central aortic pressure: the next frontier in blood pressure measurement? In: A.E. Berbari, G. Mancia, editors. Special issues in hypertension. Milan: Springer; 2012. p. 181–97.

    Google Scholar 

  4. Avolio AP, Van Bortel LM, Boutouyrie P, Cockcroft JR, McEniery CM, Protogerou AD, et al. Role of pulse pressure amplification in arterial hypertension: experts’ opinion and review of the data. Hypertension 2009;54:375–83.

    Google Scholar 

  5. McEniery CM, Yasmin, McDonnell B, Munnery M, Wallace SM, Rowe CV, et al. Central pressure: variability and impact of cardiovascular risk factors: the Anglo-Cardiff Collaborative Trial II. Hypertension 2008;51:1476–82.

    Google Scholar 

  6. McEniery CM, Yasmin, Hall IR, Qasem A, Wilkinson IB, Cockcroft JR. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol 2005; 46:1753–60.

    Google Scholar 

  7. Yasmin Brown MJ. Similarities and differences between augmentation index and pulse wave velocity in the assessment of arterial stiffness. QJM 1999;92:595–600.

    Google Scholar 

  8. Safar ME, Blacher J, Pannier B, Guerin AP, Marchais SJ, Guyonvarc’h PM, et al. Central pulse pressure and mortality in end-stage renal disease. Hypertension 2002;39:735–8.

    Google Scholar 

  9. Weber T, Auer J, O’Rourke MF, Kvas E, Lassnig E, Lamm G, et al. Increased arterial wave reflections predict severe cardiovascular events in patients undergoing percutaneous coronary interventions. Eur Heart J 2005;26:2657–63.

    Google Scholar 

  10. Roman MJ, Okin PM, Kizer JR, Lee ET, Howard BV, Devereux RB. Relations of central and brachial blood pressure to left ventricular hypertrophy and geometry: the Strong Heart Study. J Hypertens 2010;28:384–8.

    Google Scholar 

  11. Vlachopoulos C, Aznaouridis K, O’Rourke MF, Safar ME, Baou K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J 2010;31:1865–71.

    Google Scholar 

  12. Roman MJ, Devereux RB, Kizer JR, Lee ET, Galloway JM, Ali T, et al. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: the Strong Heart Study. Hypertension 2007;50:197–203.

    Google Scholar 

  13. Muiesan ML, Salvetti M, Bertacchini F, Agabiti-Rosei C, Maruelli G, Colonetti E, et al. Central blood pressure assessment using 24-hour brachial pulse wave analysis. J Vasc Diagn 2014;2:141–8.

    Google Scholar 

  14. Jankowski P, Kawecka-Jaszcz K, Czarnecka D, Brzozowska-Kiszka M, Styczkiewicz K, Loster M, et al. Pulsatile but not steady component of blood pressure predicts cardiovascular events in coronary patients. Hypertension 2008;51:848–55.

    Google Scholar 

  15. Pini R, Cavallini MC, Palmieri V, Marchionni N, Di BM, Devereux RB, et al. Central but not brachial blood pressure predicts cardiovascular events in an unselected geriatric population: the ICARe Dicomano Study. J Am Coll Cardiol 2008;51:2432–9.

    Google Scholar 

  16. 2003 European Society of Hypertension-European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens 2003;21:1011–53.

  17. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 2006;113:1213–25.

    Google Scholar 

  18. Avolio A. Central aortic blood pressure and management of hypertension: confirmation of a paradigm shift? Hypertension 2013;62:1005–7.

    Google Scholar 

  19. Sharman JE, Marwick TH, Gilroy D, Otahal P, Abhayaratna WP, Stowasser M. Randomized trial of guiding hypertension management using central aortic blood pressure compared with best-practice care: principal findings of the BP GUIDE study. Hypertension 2013;62:1138–45.

    Google Scholar 

  20. Izzo Jr JL. Brachial vs. central systolic pressure and pulse wave transmission indicators: a critical analysis. Am J Hypertens 2014;27:1433–42.

    Google Scholar 

  21. Millasseau S, Agnoletti D. Non-invasive estimation of aortic blood pressures: a close look at current devices and methods. Curr Pharm Des 2015;21:709–18.

    Google Scholar 

  22. McEniery CM, Cockcroft JR, Roman MJ, Franklin SS, Wilkinson IB. Central blood pressure: current evidence and clinical importance. Eur Heart J 2014;35:1719–25.

    Google Scholar 

  23. Narayan O, Casan J, Szarski M, Dart AM, Meredith IT, Cameron JD. Estimation of central aortic blood pressure: a systematic meta-analysis of available techniques. J Hypertens 2014;32:1727–40.

    Google Scholar 

  24. Cheng HM, Lang D, Tufanaru C, Pearson A. Measurement accuracy of non-invasively obtained central blood pressure by applanation tonometry: a systematic review and meta-analysis. Int J Cardiol 2013;167:1867–76.

    Google Scholar 

  25. Weber T, Wassertheurer S. Moving on–on average in the right direction?: noninvasive methods to estimate central blood pressure. Hypertension 2014;63:665–7.

    Google Scholar 

  26. Mitchell GF. Does measurement of central blood pressure have treatment consequences in the clinical praxis? Curr Hypertens Rep 2015;17:66.

  27. Williams B, Lacy PS, Yan P, Hwee CN, Liang C, Ting CM. Development and validation of a novel method to derive central aortic systolic pressure from the radial pressure waveform using an n-point moving average method. J Am Coll Cardiol 2011;57:951–61.

    Google Scholar 

  28. Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA, Cockcroft JR, et al. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension 2015;66:698–722.

    Google Scholar 

  29. Hashimoto J, Ito S. Central blood pressure and prediction of cardiovascular events. Curr Hypertens Rev 2012;8:108–13.

    Google Scholar 

  30. Wang KL, Cheng HM, Chuang SY, Spurgeon HA, Ting CT, Lakatta EG, et al. Central or peripheral systolic or pulse pressure: which best relates to target organs and future mortality? J Hypertens 2009;27:461–7.

    Google Scholar 

  31. Briet M, Bozec E, Laurent S, Fassot C, London GM, Jacquot C, et al. Arterial stiffness and enlargement in mild-to-moderate chronic kidney disease. Kidney Int 2006;69:350–7.

    Google Scholar 

  32. Briet M, Collin C, Karras A, Laurent S, Bozec E, Jacquot C, et al. Arterial remodeling associates with CKD progression. J Am Soc Nephrol 2011;22:967–74.

    Google Scholar 

  33. London GM, Blacher J, Pannier B, Guerin AP, Marchais SJ, Safar ME. Arterial wave reflections and survival in end-stage renal failure. Hypertension 2001;38:434–8.

    Google Scholar 

  34. Chirinos JA, Zambrano JP, Chakko S, Veerani A, Schob A, Willens HJ, et al. Aortic pressure augmentation predicts adverse cardiovascular events in patients with established coronary artery disease. Hypertension 2005;45:980–5.

    Google Scholar 

  35. Weber T, O’Rourke MF, Lassnig E, Porodko M, Ammer M, Rammer M, et al. Pulse waveform characteristics predict cardiovascular events and mortality in patients undergoing coronary angiography. J Hypertens 2010;28:797–805.

    Google Scholar 

  36. Roman MJ, Devereux RB, Kizer JR, Okin PM, Lee ET, Wang W, et al. High central pulse pressure is independently associated with adverse cardiovascular outcome the strong heart study. J Am Coll Cardiol 2009;54:1730–4.

    Google Scholar 

  37. Chirinos JA, Kips JG, Jacobs Jr DR, Brumback L, Duprez DA, Kronmal R, et al. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis). J Am Coll Cardiol 2012;60:2170–7.

    Google Scholar 

  38. Chirinos JA, Segers P, Duprez DA, Brumback L, Bluemke DA, Zamani P, et al. Late systolic central hypertension as a predictor of incident heart failure: the Multi-ethnic Study of Atherosclerosis. J Am Heart Assoc 2015;4:e001335.

  39. Dolan E, Staessen JA, O’Brien E. Data from the Dublin outcome study. Blood Press Monit 2007;12:401–3.

    Google Scholar 

  40. Danchin N, Benetos A, Lopez-Sublet M, Demicheli T, Safar M, Mourad JJ. Aortic pulse pressure is related to the presence and extent of coronary artery disease in men undergoing diagnostic coronary angiography: a multicenter study. Am J Hypertens 2004;17:129–33.

    Google Scholar 

  41. Jankowski P, Bednarek A, Olszanecka A, Windak A, Kawecka-Jaszcz K, Czarnecka D. Twenty-four-hour profile of central blood pressure and central-to-peripheral systolic pressure amplification. Am J Hypertens 2013;26:27–33.

    Google Scholar 

  42. Wassertheurer S, Baumann M. Assessment of systolic aortic pressure and its association to all cause mortality critically depends on waveform calibration. J Hypertens 2015;33:1884–9.

    Google Scholar 

  43. Matsui Y, Eguchi K, Shibasaki S, Ishikawa J, Hoshide S, Pickering TG, et al. Monitoring of the central pulse pressure is useful for detecting cardiac overload during antiadrenergic treatment: the Japan Morning Surge 1 study. J Hypertens 2008; 26:1928–34.

    Google Scholar 

  44. Dahlof B, Sever PS, Poulter NR, Wedel H, Beevers DG, Caulfield M, et al. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomised controlled trial. Lancet 2005;366:895–906.

    Google Scholar 

  45. Greve AM, Olsen MH, Bella JN, Lonnebakken MT, Gerdts E, Okin PM, et al. Contrasting hemodynamic mechanisms of losartan- vs. atenolol-based antihypertensive treatment: a LIFE study. Am J Hypertens 2012;25:1017–23.

    Google Scholar 

  46. Davies JE, Lacy P, Tillin T, Collier D, Cruickshank JK, Francis DP, et al. Excess pressure integral predicts cardiovascular events independent of other risk factors in the conduit artery functional evaluation substudy of Anglo-Scandinavian Cardiac Outcomes Trial. Hypertension 2014;64:60–8.

    Google Scholar 

  47. London GM, Asmar RG, O’Rourke MF, Safar ME. Mechanism(s) of selective systolic blood pressure reduction after a low-dose combination of perindopril/indapamide in hypertensive subjects: comparison with atenolol. J Am Coll Cardiol 2004;43:92–9.

    Google Scholar 

  48. Lopez-Jaramillo P, Sanchez RA, Diaz M, Cobos L, Bryce A, Parra Carrillo JZ, et al. Latin American consensus on hypertension in patients with diabetes type 2 and metabolic syndrome. J Hypertens 2013;31:223–38.

    Google Scholar 

  49. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC practice guidelines for the management of arterial hypertension. Blood Press 2014;23:3–16.

    Google Scholar 

  50. Shimamoto K, Ando K, Fujita T, Hasebe N, Higaki J, Horiuchi M, et al. The Japanese Society of hypertension guidelines for the management of hypertension (JSH 2014). Hypertens Res 2014; 37:253–390.

    Google Scholar 

  51. Agabiti-Rosei E, Mancia G, O’rourke MF, Roman MJ, Safar ME, Smulyan H, et al. Central blood pressure measurements and antihypertensive therapy: a consensus document. Hypertension 2007;50:154–60.

    Google Scholar 

  52. Dudenbostel T, Glasser SP. Effects of antihypertensive drugs on arterial stiffness. Cardiol Rev 2012;20:259–63.

    Google Scholar 

  53. Oparil S, Izzo Jr JL. Pulsology rediscovered: commentary on the conduit artery function evaluation (CAFE) study. Circulation 2006;113:1162–3.

    Google Scholar 

  54. Matsui Y, Kario K. Differential impacts of antihypertensive drugs on central blood pressure and their clinical significance. Curr Hypertens Rev 2012;8:114–9.

    Google Scholar 

  55. Boutouyrie P, Achouba A, Trunet P, Laurent S. Amlodipine-valsartan combination decreases central systolic blood pressure more effectively than the amlodipine-atenolol combination: the EXPLOR study. Hypertension 2010;55:1314–22.

    Google Scholar 

  56. Kario K. Proposal of RAS-diuretic vs. RAS-calcium antagonist strategies in high-risk hypertension: insight from the 24-hour ambulatory blood pressure profile and central pressure. J Am Soc Hypertens 2010;4:215–8.

    Google Scholar 

  57. Protogerou AD, Papaioannou TG, Lekakis JP, Blacher J, Safar ME. The effect of antihypertensive drugs on central blood pressure beyond peripheral blood pressure. Part I: (Patho)-physiology, rationale and perspective on pulse pressure amplification. Curr Pharm Des 2009;15:267–71.

    Google Scholar 

  58. Protogerou AD, Stergiou GS, Vlachopoulos C, Blacher J, Achimastos A. The effect of antihypertensive drugs on central blood pressure beyond peripheral blood pressure. Part II: evidence for specific class-effects of antihypertensive drugs on pressure amplification. Curr Pharm Des 2009;15:272–89.

    Google Scholar 

  59. Manisty CH, Hughes AD. Meta-analysis of the comparative effects of different classes of antihypertensive agents on brachial and central systolic blood pressure, and augmentation index. Br J Clin Pharmacol 2013;75:79–92.

    Google Scholar 

  60. McEniery C. Central blood pressure and cardiovascular risk: an individual participant meta-analysis of prospective observational data from 22,433 subjects. J Am Coll Cardiol 2015; 65(10_S). http://doi.org/10.1016/S0735-1097(15)61464-4.

  61. Papaioannou TG, Protogerou AD, Stamatelopoulos KS, Vavuranakis M, Stefanadis C. Non-invasive methods and techniques for central blood pressure estimation: procedures, validation, reproducibility and limitations. Curr Pharm Des 2009;15:245–53.

    Google Scholar 

  62. Wilkinson IB, McEniery C, Schillaci G, Boutouyrie P, Segers P, Donald A. ARTERY Society guidelines for validation of non-invasive haemodynamic measurement devices: Part 1, arterial pulse wave velocity. Artery Res 2010;4:34–40.

    Google Scholar 

  63. Topouchian J, El Feghali R, Pannier B, Wang S, Zhao F, Smetana K, et al. Arterial stiffness and pharmacological interventions–the TRanscend arterial stiffNess Substudy (TRANS study). Vasc Health Risk Manag 2007;3:381–7.

    Google Scholar 

  64. Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 2008;358:1547–59.

    Google Scholar 

  65. Kawamori R, Daida H, Tanaka Y, Miyauchi K, Kitagawa A, Hayashi D, et al. Amlodipine versus angiotensin II receptor blocker; control of blood pressure evaluation trial in diabetics (ADVANCED-J). BMC Cardiovasc Disord 2006;6:39.

    Google Scholar 

  66. Williams B, Cockcroft JR, Kario K, Zappe DH, Wang Q, Guo W. Principal results of the prospective comparison of Angiotensin Receptor neprilysin inhibitor with Angiotensin receptor blocker MEasuring arterial sTiffness in the eldERly - PARAMETER study. In: Presented at ESC; 2015.

  67. Cheng HM, Chuang SY, Sung SH, Yu WC, Pearson A, Lakatta EG, et al. Derivation and validation of diagnostic thresholds for central blood pressure measurements based on long-term cardiovascular risks. J Am Coll Cardiol 2013;62:1780–7.

    Google Scholar 

  68. Herbert A, Cruickshank JK, Laurent S, Boutouyrie P. Establishing reference values for central blood pressure and its amplification in a general healthy population and according to cardiovascular risk factors. Eur Heart J 2014;35:3122–33.

    Google Scholar 

  69. Townsend RR, Roman MJ, Najjar SS, Cockcroft JR, Feig PU, Stockbridge NL. Central blood pressure measurements-an opportunity for efficacy and safety in drug development? J Am Soc Hypertens 2010;4:211–4.

    Google Scholar 

  70. Sola J, Proenca M, Chetelat O. Wearable PWV technologies to measure Blood Pressure: eliminating brachial cuffs. Conf Proc IEEE Eng Med Biol Soc 2013:4098–101.

  71. Baschiera F, Chang W, Brunel P. Effects of aliskiren- and ramipril-based treatment on central aortic blood pressure in elderly with systolic hypertension: a substudy of AGELESS. Vasc Health Risk Manag 2014;10:389–97.

    Google Scholar 

  72. Whaley-Connell A, Purkayastha D, Yadao A, Sowers JR. Central pressure and biomarker responses to renin inhibition with hydrochlorothiazide and ramipril in obese hypertensives: the ATTAIN study. Cardiorenal Med 2011;1:53–66.

    Google Scholar 

  73. Townsend RR, Forker AD, Bhosekar V, Yadao A, Keefe DL. Comparison of aliskiren/hydrochlorothiazide combination therapy and amlodipine monotherapy in patients with stage 2 systolic hypertension and type 2 diabetes mellitus. J Clin Hypertens (Greenwich) 2011;13:889–97.

    Google Scholar 

  74. Ferdinand KC, Pool J, Weitzman R, Purkayastha D, Townsend R. Peripheral and central blood pressure responses of combination aliskiren/hydrochlorothiazide and amlodipine monotherapy in African American patients with stage 2 hypertension: the ATLAAST trial. J Clin Hypertens (Greenwich) 2011;13:366–75.

    Google Scholar 

  75. Black HR, Weinberger MH, Purkayastha D, Lee J, Sridharan K, Israel M, et al. Comparative efficacy and safety of combination aliskiren/amlodipine and amlodipine monotherapy in African Americans with stage 2 hypertension. J Clin Hypertens (Greenwich) 2011;13:571–81.

    Google Scholar 

  76. Weber T, Auer J, O’Rourke MF, Kvas E, Lassnig E, Berent R, et al. Arterial stiffness, wave reflections, and the risk of coronary artery disease. Circulation 2004;109:184–9.

    Google Scholar 

  77. Roman MJ, Ganau A, Saba PS, Pini R, Pickering TG, Devereux RB. Impact of arterial stiffening on left ventricular structure. Hypertension 2000;36:489–94.

    Google Scholar 

  78. KDIGO clinical practice guideline for the management of blood pressure international society of nephrology. International Society of Nephrology; 2012. p. 2.

  79. Aronow WS, Fleg JL, Pepine CJ, Artinian NT, Bakris G, Brown AS, et al. ACCF/AHA 2011 expert consensus document on hypertension in the elderly: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus documents developed in collaboration with the American Academy of Neurology, American Geriatrics Society, American Society for Preventive Cardiology, American Society of Hypertension, American Society of Nephrology, Association of Black Cardiologists, and European Society of Hypertension. J Am Coll Cardiol 2011;57:2037–114.

    Google Scholar 

  80. K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am J Kidney Dis 2005;45:S1–153.

  81. Kim EJ, Song WH, Lee JU, Shin MS, Lee S, Kim BO, et al. Efficacy of losartan and carvedilol on central hemodynamics in hypertensives: a prospective, randomized, open, blinded end point, multicenter study. Hypertens Res 2014;37:50–6.

    Google Scholar 

  82. Shimizu M, Hoshide S, Ishikawa J, Yano Y, Eguchi K, Kario K. Correlation of central blood pressure to hypertensive target organ damages during antihypertensive treatment: the J-TOP study. Am J Hypertens 2015;28:980–6.

    Google Scholar 

  83. Kampus P, Serg M, Kals J, Zagura M, Muda P, Karu K, et al. Differential effects of nebivolol and metoprolol on central aortic pressure and left ventricular wall thickness. Hypertension 2011;57:1122–8.

    Google Scholar 

  84. Soanker R, Naidu MU, Raju SB, Prasad AK, Rao TR. Effect of beta-1-blocker, nebivolol, on central aortic pressure and arterial stiffness in patients with essential hypertension. Indian J Pharmacol 2012;44:407–11.

    Google Scholar 

  85. Studinger P, Tabak AG, Chen CH, Salvi P, Othmane TE, Torzsa P, et al. The effect of low-dose carvedilol, nebivolol, and metoprolol on central arterial pressure and its determinants: a randomized clinical trial. J Clin Hypertens (Greenwich) 2013;15:910–7.

    Google Scholar 

  86. Zhou WJ, Wang RY, Li Y, Chen DR, Chen EZ, Zhu DL, et al. A randomized controlled study on the effects of bisoprolol and atenolol on sympathetic nervous activity and central aortic pressure in patients with essential hypertension. PLoS One 2013;8:e72102.

  87. Redon J, Pascual-Izuel JM, Rodilla E, Vicente A, Olivan J, Bonet J, et al. Effects of nebivolol and atenolol on central aortic pressure in hypertensive patients: a multicenter, randomized, double-blind study. Blood Press 2014;23:181–8.

    Google Scholar 

  88. Kanaoka T, Tamura K, Ohsawa M, Wakui H, Maeda A, Dejima T, et al. Effects of aliskiren-based therapy on ambulatory blood pressure profile, central hemodynamics, and arterial stiffness in nondiabetic mild to moderate hypertensive patients. J Clin Hypertens (Greenwich) 2012;14:522–9.

    Google Scholar 

  89. Williams B, Lacy PS, Baschiera F, Brunel P, Dusing R. Novel description of the 24-hour circadian rhythms of brachial versus central aortic blood pressure and the impact of blood pressure treatment in a randomized controlled clinical trial: the Ambulatory Central Aortic Pressure (AmCAP) Study. Hypertension 2013;61:1168–76.

    Google Scholar 

  90. Bonadei I, Vizzardi E, D’Aloia A, Sciatti E, Raddino R, Metra M. Role of aliskiren on arterial stiffness and endothelial function in patients with primary hypertension. J Clin Hypertens (Greenwich) 2014;16:202–6.

    Google Scholar 

  91. Lacy PS, Brunel P, Baschiera F, Botha J, Williams B. Effects of exercise on central aortic pressure before and after treatment with renin-angiotensin system blockade in patients with hypertension. J Renin Angiotensin Aldosterone Syst 2015;16:1052–60.

    Google Scholar 

  92. Lacy PS, Brunel P, Bader G, Jones A, Baschiera F, Dusing R, et al. Effects of treatment withdrawal on brachial and central aortic pressure after direct renin inhibition or angiotensin receptor blockade. J Renin Angiotensin Aldosterone Syst 2015; 16:614–22.

    Google Scholar 

  93. Kwon BJ, Jang SW, Choi KY, Kim DB, Cho EJ, Ihm SH, et al. Comparison of the efficacy between hydrochlorothiazide and chlorthalidone on central aortic pressure when added on to candesartan in treatment-naive patients of hypertension. Hypertens Res 2013;36:79–84.

    Google Scholar 

  94. Izzo Jr JL, Rajpal M, Karan S, Srikakarlapudi S, Osmond PJ. Hemodynamic and central blood pressure differences between carvedilol and valsartan added to lisinopril at rest and during exercise stress. J Am Soc Hypertens 2012;6:117–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Williams.

Rights and permissions

This is an open access article distributed under the CC BY-NC license. https://doi.org/creativecommons.org/licenses/by/4.0/

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, B., Brunel, P., Lacy, P.S. et al. Application of non-invasive central aortic pressure assessment in clinical trials: Clinical experience and value. Artery Res 17, 1–15 (2017). https://doi.org/10.1016/j.artres.2016.10.154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.artres.2016.10.154

Keywords