Skip to main content

The reality of aging viewed from the arterial wall

References

  1. Lakatta EG, Wang M, Najjar S. Arterial aging and subclinical arterial disease are fundamentally intertwined at macroscopic and molecular levels. Med Clin North Am 2009;93:583–604.

    Google Scholar 

  2. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et alon behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 2010; 121 :e46–215.

    Google Scholar 

  3. Najjar SS, Scuteri A, Gill V, Wright JG, Muller DC, Flag JL, et al. Pulse wave velocity is an independent predictor of the longitudinal rise in systolic blood pressure and of incident hypertension in the Baltimore longitudinal study of aging. J Am Coll Cardiol 2008;51:1377–83.

    Google Scholar 

  4. Wang M, Zhang J, Jian L-Q, Spinetti G, Pintus G, Monticone R, et al. A proinflammatory profile within the grossly normal human aortic wall accompanies advancing age. Hypertension 2007;50:219–27.

    Google Scholar 

  5. Wang M, Lakatta EG. Altered regulation of matrix metalloproteinase-2 in aortic remodeling during aging. Hypertension 2002;39:865–73.

    Google Scholar 

  6. Spinetti G, Wang M, Monticone R, Zhang J, Zhao D, Lakatta EG. Rat aortic MCP-1 and its receptor CCR2 increase with age and alter vascular smooth muscle cell function. Arterioscler Thromb Vasc Biol 2004;24:1397–402.

    Google Scholar 

  7. Wang M, Zhang J, Spinetti G, Jiang L-Q, Monticone R, Zhao D, et al. Angiotensin II activates matrix metalloproteinase type II and mimics age-associated carotid arterial remodeling in young rats. Am J Pathol 2005;167:1429–42.

    Google Scholar 

  8. Fu Z, Wang M, Gucek M, Zhang J, Wu J, Hiang L, et al. Milk fat globule protein epidermal growth factor-8: a pivotal relay element within the angiotensin II and monocyte chemo-attractant protein-1 signaling cascade mediating vascular smooth muscle cells invasion. Circ Res 2009;104:1337–46.

    Google Scholar 

  9. Wang M, Fu Z, Wu J, Zhang J, Jiang L, Khazan B, et al. MFG-E8 activates proliferation of vascular smooth muscle cells via integrin signaling. Aging Cell 2012;11:500–8.

    Google Scholar 

  10. Merlini G, Bellotti V. Mechanisms of disease: molecular mechanisms of amyloidosis. N Engl J Med 2003;349:583–96.

    Google Scholar 

  11. Iwata T, Kamei T, Uchino F, Mimaya H, Yanagaki T, Etoh H. Pathological study on amyloidosis – relationship of amyloid deposits in the aorta to aging. Acta Path Jap 1978; 28(2): 193–203.

    Google Scholar 

  12. Westermark P. Aspects on human amyloid forms and their fibril polypeptides. FEBS J 2005 Dec;272(23):5942–9.

    Google Scholar 

  13. Sciarretta KL, Gordon DJ, Meredith SC. Peptide-based inhibitors of amyloid assembly. Meth Enzymol 2006;413:273–312.

    Google Scholar 

  14. Thundimadathil J, Roeske RW, Jiang HY, Guo L. Aggregation and porin-like channel activity of a β sheet peptide. Biochemistry 2005;44:10259.

    Google Scholar 

  15. Peng S, Glennert J, Westermark P. Medin-amyloid: a recently characterized age-associated arterial amyloid form affects mainly arteries in the upper part of the body. Amyloid 2005 Jun;12(2):96–102.

    Google Scholar 

  16. Larsson A, Peng S, Persson H, Rosenbloom J, Abrams WR, Wassberg E, et al. Lactadherin binds to elastin – a starting point for medin amyloid formation? Amyloid 2006 Jun;13(2): 78–85.

    Google Scholar 

  17. Larsson A, Söderberg L, Westermark GT, Sletten K, Engström U, Tjernberg LO, et al. Unwinding fibril formation of medin, the peptide of the most common form of human amyloid. Biochem Biophys Res Commun 2007 Oct 5; 361(4): 822–8.

    Google Scholar 

  18. Mucchiano G, Cornwell 3rd GG, Westermark P. Senile aortic amyloid. Evidence for two distinct forms of localized deposits. Am J Pathol 1992;140:871–7.

    Google Scholar 

  19. Yanagisawa H, Davis EC, Starcher BC, Ouchi T, Yanagisawa M, Richardson JA, et al. Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature 2002; 415:168–71.

    Google Scholar 

  20. Nakamura T, Lozano PR, Ikeda Y, Iwanaga Y, Hinek A, Minamisawa S, et al. Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature 2002;415:171–5.

    Google Scholar 

  21. Taylor MR, Couto JR, Scallan CD, Ceriani RL, Peterson JA. Lactadherin (formerly BA46), a membrane-associated glycoprotein expressed in human milk and breast carcinomas, promotes Arg-Gly-Asp (RGD)-dependent cell adhesion. DNA Cell Biol 1997;16:861–9.

    Google Scholar 

  22. Häggqvist B, Näslund J, Sletten K, Westermark GT, Mucchiano G, Tjernberg LO, et al. Medin: an integral fragment of aortic smooth muscle cell-produced lactadherin forms the most common human amyloid. Proc Natl Acad Sci U S A 1999; 96:8669–74.

    Google Scholar 

  23. Cheng M, Li B, Li X, Wang Q, Zhang J, Jing X, et al. Correlation between serum lactadherin and pulse wave velocity and cardiovascular risk factors in elderly patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2012;95:125–31.

    Google Scholar 

  24. Silvestre JS, Théry C, Hamard G, Boddaert J, Aguilar B, Delcayre A, et al. Lactadherin promotes VEGF-dependent neovascularization. Nat Med 2005; 11:499–506.

    Google Scholar 

  25. Motegi S, Leitner WW, Lu M, Tada Y, Sárdy M, Wu C, et al. Pericyte-derived MFG-E8 regulates pathologic angiogenesis. Arterioscler Thromb Vasc Biol 2011;31:2024–34.

    Google Scholar 

  26. Motegi S, Garfield S, Feng X, Sárdy M, Udey MC. Potentiation of platelet-derived growth factor receptor-signaling mediated by integrin-associated MFG-E8. Arterioscler Thromb Vasc Biol 2011;31:2653–64.

    Google Scholar 

  27. Jiang L, Wang M, Zhang J, Monticone RE, Telljohann R, Spinetti G, et al. Increased aortic calpain-1 activity mediates age-associated angiotensin II signaling of vascular smooth muscle cells. PLoS One 2008;3:e2231.

    Google Scholar 

  28. Jiang L, Zhang J, Monticone RE, Telljohann R, Wu J, Wang M, et al. Calpain-1 regulation of matrix metalloprotease 2 activity in vascular smooth muscle cells facilitates age-associated aortic wall calcification and fibrosis. Hypertension. [Epub ahead of print].

  29. Wang M, Zhang J, Telljohann R, Jiang L, Wu J, Monticone RE, et al. Chronic matrix metalloproteinase inhibition retards age-associated arterial proinflammation and increase in blood pressure. Hypertension 2012;60:459–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward G. Lakatta.

Additional information

McDonald Lecture, ARTERY 12, Vienna, Austria, October 20, 2012.

Rights and permissions

This is an open access article distributed under the CC BY-NC license. https://doi.org/creativecommons.org/licenses/by/4.0/

Reprints and permissions

About this article

Cite this article

Lakatta, E.G. The reality of aging viewed from the arterial wall. Artery Res 7, 73–80 (2013). https://doi.org/10.1016/j.artres.2013.01.003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.artres.2013.01.003