Skip to main content

Waves in arteries: A review of wave intensity analysis in the systemic and coronary circulations

Summary

The intermittent ejection of blood by the ventricle results in pulsatile pressure and flow waveforms in the circulation. Understanding and characterizing this pulsatile behaviour is attracting increasing clinical interest, as it may have important implications for risk prediction and the mechanisms of action of therapeutic agents. This review focuses on the theory and use of wave intensity analysis to analyse pulsatile waveforms in the arterial circulation with particular reference to the coronary circulation.

References

  1. Fung YC. Biomechanics circulation. 2nd ed. New York: Springer; 1997.

    Google Scholar 

  2. Euler L. Principia pro motu sanguinis per arterias determinando. Opera postuma 1862;2:1814-–23.

    Google Scholar 

  3. Young T. Hydraulic investigations, subservient to an intended Croonian Lecture on the motion of blood. Philos Trans R Soc Lond 1808;98:164–86.

    Google Scholar 

  4. Milnor WR. Hemodynamics. 2nd ed. Baltimore: Williams & Williams; 1989.

    Google Scholar 

  5. Nichols WV, O’Rourke MF. McDonald’s blood flow in arteries. Theoretical, experimental and clinical principles. 4th ed. London: Edward Arnold; 1998.

    Google Scholar 

  6. London GM, Blacher J, Pannier B, Guerin AP, Marchais SJ, Safar ME. Arterial wave reflections and survival in end-stage renal failure. Hypertension 2001;38:434–8.

    Google Scholar 

  7. Weber T, Auer J, O’Rourke MF, Kvas E, Lassnig E, Lamm G, et al. Increased arterial wave reflections predict severe cardiovascular events in patients undergoing percutaneous coronary interventions. Eur Heart J 2005;26:2657–63.

    Google Scholar 

  8. Chirinos JA, Zambrano JP, Chakko S, Veerani A, Schob A, Willens HJ, et al. Aortic pressure augmentation predicts adverse cardiovascular events in patients with established coronary artery disease. Hypertension 2005;45:980–5.

    Google Scholar 

  9. Dart AM, Gatzka CD, Kingwell BA, Willson K, Cameron JD, Liang YL, et al. Brachial blood pressure but not carotid arterial waveforms predict cardiovascular events in elderly female hypertensives. Hypertension 2006;47:785–90.

    Google Scholar 

  10. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, et al. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the conduit artery function evaluation (CAFE) study. Circulation 2006;113:1213–25.

    Google Scholar 

  11. O’Rourke MF. Towards optimization of wave reflection: therapeutic goal for tomorrow? Clin Exp Pharmacol Physiol 1996; 23:S11–5.

    Google Scholar 

  12. Mitchell GF. Arterial stiffness and wave reflection in hypertension: pathophysiologic and therapeutic implications. Curr Hy-pertens Rep 2004;6:436–41.

    Google Scholar 

  13. Nichols WW. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens 2005;18:S3–10.

    Google Scholar 

  14. Lighthill J. Waves in fluids. Cambridge, UK: Cambridge University Press; 1979.

    Google Scholar 

  15. Parker KH, Jones CJ, Dawson JR, Gibson DG. What stops the flow of blood from the heart? Heart Vessels 1988;4:241–5.

    Google Scholar 

  16. Wang JJ, O’Brien AB, Shrive NG, Parker KH, Tyberg JV. Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. Am J Physiol Heart Circ Physiol 2003;284:H1358–68.

    Google Scholar 

  17. Lambert JW. On the nonlinearities of fluid flow in nonrigid tubes. J Franklin Inst 1958;266:83–102.

    Google Scholar 

  18. Anliker M, Rockweel RL, Ogden E. Nonlinear analysis of flow pulses and shock waves in arteries. Part I. Zeit Angew Math Phys 1971;22:217–46.

    Google Scholar 

  19. Streeter VL, Keitzer WF, Bohr DF. Pulsatile pressure and flow through distensible vessels. Circ Res 1963;13:3–20.

    Google Scholar 

  20. Skalak R. Synthesis of a complete circulation. In: Bergel DH, editor. Cardiovascular fluid dynamics. London and New York: Academic Press; 1972. p. 341–76.

    Google Scholar 

  21. Parker KH, Jones CJ. Forward and backward running waves in the arteries: analysis using the method of characteristics. J Biomech Eng 1990;112:322–6.

    Google Scholar 

  22. Pythoud F, Stergiopulos N, Meister JJ. Forward and backward waves in the arterial system: nonlinear separation using Riemann invariants. Technol Health Care 1995;3:201–7.

    Google Scholar 

  23. Demiray H. Waves in initially stressed fluid-filled thick tubes. J Biomech 1997;30:273–6.

    Google Scholar 

  24. Epstein M, Johnston C. Improved solution for solitary waves in arteries. J Math Biol 1999;39:1–18.

    Google Scholar 

  25. Crépeau E, Sorine M. A reduced model of pulsatile flow in an arterial compartment. Chaos Soliton Fract 2007;34:594–605.

    Google Scholar 

  26. Jones CJH, Sugawara M, Davies RH, Kondoh Y, Uchida K, Parker KH. Arterial wave intensity: physical meaning and physiological significance. In: Hosoda H, Yaginum T, Sugawara M, Taylor MG, Caro CG, editors. Recent progress in cardiovascular mechanics. Chur: Harwood Academic Publishers; 1993. p. 129–48.

    Google Scholar 

  27. Khir AW, Henein MY, Koh T, Das SK, Parker KH, Gibson DG. Arterial waves in humans during peripheral vascular surgery. Clin Sci (Lond) 2001;101:749–57.

    Google Scholar 

  28. Zambanini A, Cunningham SL, Parker KH, Khir AW, McG Thom SA, Hughes AD. Wave-energy patterns in carotid, brachial, and radial arteries: a noninvasive approach using waveintensity analysis. Am J Physiol Heart Circ Physiol 2005;289: H270–6.

    Google Scholar 

  29. Penny DJ, Mynard JP, Smolich JJ. Aortic wave intensity analysis of ventricular-vascular interaction during incremental dobutamine infusion in adult sheep. Am J Physiol Heart Circ Physiol 2008;294:H481–9.

    Google Scholar 

  30. Khir AW, Zambanini A, Parker KH. Local and regional wave speed in the aorta: effects of arterial occlusion. Med Eng Phys 2004;26:23–9.

    Google Scholar 

  31. Lawrence M. Audition. Annu Rev Psychol 1968;19:1–26.

    Google Scholar 

  32. Curtis SL, Zambanini A, Mayet J, Thom SA, Foale R, Parker KH, et al. Reduced systolic wave generation and increased peripheral wave reflection in chronic heart failure. Am J Physiol Heart Circ Physiol 2007;293:H557–62.

    Google Scholar 

  33. Aguado-Sierra J, Parker KH, Davies JE, Francis D, Hughes AD, Mayet J. Arterial pulse wave velocity in coronary arteries. Proceedings of the 28th IEEE EMBS annual international conference; 2006:867–70.

    Google Scholar 

  34. MacRae JM, Sun YH, Isaac DL, Dobson GM, Cheng C-P, Little WC, et al. Wave-intensity analysis: a new approach to left ventricular filling dynamics. Heart Vessels 1997;12: 53–9.

    Google Scholar 

  35. Koh TW, Pepper JR, DeSouza AC, Parker KH. Analysis of wave reflections in the arterial system using wave intensity: a novel method for predicting the timing and amplitude of reflected waves. Heart Vessels 1998;13:103–13.

    Google Scholar 

  36. Jones CJ, Sugawara M, Kondoh Y, Uchida K, Parker KH. Compression and expansion wavefront travel in canine ascending aortic flow: wave intensity analysis. Heart Vessels 2002;16: 91–8.

    Google Scholar 

  37. Sun YH, Anderson TJ, Parker KH, Tyberg JV. Wave-intensity analysis: a new approach to coronary hemodynamics. J Appl Physiol 2000;89:1636–44.

    Google Scholar 

  38. Davies JE, Whinnett ZI, Francis DP, Manisty CH, Aguado-Sierra J, Willson K, et al. Evidence of a dominant backward-propagating ‘‘suction’’ wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation 2006;113:1768–78.

    Google Scholar 

  39. Sun YH, Anderson TJ, Parker KH, Tyberg JV. Effectsofleft ventricular contractility and coronary vascular resistance on coronary dynamics. Am J Physiol Heart Circ Physiol 2004;286:H1590–5.

    Google Scholar 

  40. Ohte N, Narita H, Sugawara M, Niki K, Okada T, Harada A, et al. Clinical usefulness of carotid arterial wave intensity in assessing left ventricular systolic and early diastolic performance. Heart Vessels 2003;18:107–11.

    Google Scholar 

  41. Niki K, Sugawara M, Uchida K, Tanaka R, Tanimoto K, Imamura H, et al. A noninvasive method of measuring wave intensity, a new hemodynamic index: application to the carotid artery in patients with mitral regurgitation before and after surgery. Heart Vessels 1999;14:263–71.

    Google Scholar 

  42. Niki K, Sugawara M, Chang D, Harada A, Okada T, Sakai R, et al. A new noninvasive measurement system for wave intensity: evaluation of carotid arterial wave intensity and reproducibility. Heart Vessels 2002;17:12–21.

    Google Scholar 

  43. Zambanini A, Khir AW, Byrd SM, Parker KH, Thom SAM, Hughes AD. Wave intensity analysis: a novel non-invasive method for determining arterial wave transmission. Comput Cardiol 2002;29:717–20.

    Google Scholar 

  44. Hollander EH, Wang JJ, Dobson GM, Parker KH, Tyberg JV. Negative wave reflections in pulmonary arteries. Am J Physiol Heart Circ Physiol 2001;281:H895–902.

    Google Scholar 

  45. Wang JJ, Flewitt JA, Shrive NG, Parker KH, Tyberg JV. Systemic venous circulation. Waves propagating on a windkessel: relation of arterial and venous windkessels to systemic vascular resistance. Am J Physiol Heart Circ Physiol 2006;290:H154–62.

    Google Scholar 

  46. Hollander EH, Dobson GM, Wang JJ, Parker KH, Tyberg JV. Direct and series transmission of left atrial pressure perturbations to the pulmonary artery: a study using wave-intensity analysis. Am J Physiol Heart Circ Physiol 2004;286:H267–75.

    Google Scholar 

  47. Wang Z, Jalali F, Sun YH, Wang JJ, Parker KH, Tyberg JV. Assessment of left ventricular diastolic suction in dogs using wave-intensity analysis. Am J Physiol Heart Circ Physiol 2005;288:H1641–51.

    Google Scholar 

  48. Sun Y, Wang JJ, Belenkie I, Tyberg JV. Relationship between right ventricular wave speed and elastance in dogs. Can J Physiol Pharmacol 2006;84:943–51.

    Google Scholar 

  49. Sun Y, Belenkie I, Wang JJ, Tyberg JV. Assessment of right ventricular diastolic suction in dogs with the use of wave intensity analysis. Am J Physiol Heart Circ Physiol 2006;291:H3114–21.

    Google Scholar 

  50. Flewitt JA, Hobson TN, Wang Jr J, Johnston CR, Shrive NG, Belenkie I, et al. Wave intensity analysis of left ventricular filling: application of windkessel theory. Am J Physiol Heart Circ Physiol 2007;292:H2817–23.

    Google Scholar 

  51. Hobson TN, Flewitt JA, Belenkie I, Tyberg JV. Wave intensity analysis of left atrial mechanics and energetics in anesthetized dogs. Am J Physiol Heart Circ Physiol 2007;292:H1533–40.

    Google Scholar 

  52. Lanoye LL, Vierendeels JA, Segers P, Verdonck PR. Wave intensity analysis of left ventricular filling. J Biomech Eng 2005;127: 862–7.

    Google Scholar 

  53. Khir AW, Price S, Henein MY, Parker KH, Pepper JR. Intra-aortic balloon pumping: effects on left ventricular diastolic function. Eur J Cardiothorac Surg 2003;24:277–82.

    Google Scholar 

  54. Khir AW, Swalen MJ, Segers P, Verdonck P, Pepper JR. Hemody-namics of a pulsatile left ventricular assist device driven by a counterpulsation pump in a mock circulation. Artif Organs 2006;30:308–12.

    Google Scholar 

  55. Sugawara M, Uchida K, Kondoh Y, Magosaki N, Niki K, Jones CJ, et al. Aortic blood momentum - the more the better for the ejecting heart in vivo? Cardiovasc Res 1997;33:433–46.

    Google Scholar 

  56. Bleasdale RA, Mumford CE, Campbell RI, Fraser AG, Jones CJ, Frenneaux MP. Wave intensity analysis from the common carotid artery: a new noninvasive index of cerebral vasomotor tone. Heart Vessels 2003;18:202–6.

    Google Scholar 

  57. Niki K, Sugawara M, Chang D, Harada A, Okada T, Tanaka R. Effects of sublingual nitroglycerin on working conditions of the heart and arterial system: analysis using wave intensity. J Med Ultrasonics 2005;32:145–52.

    Google Scholar 

  58. Fujimoto S, Mizuno R, Saito Y, Nakamura S. Clinical application of wave intensity for the treatment of essential hypertension. Heart Vessels 2004;19:19–22.

    Google Scholar 

  59. Swampillai J, Rakebrandt F, Morris K, Jones CJ, Fraser AG. Acute effects of caffeine and tobacco on arterial function and wave travel. Eur J Clin Invest 2006;36:844–9.

    Google Scholar 

  60. Hoffman JI, Spaan JA. Pressure-flow relations in coronary circulation. Physiol Rev 1990;70:331–90.

    Google Scholar 

  61. Westerhof N, Boer C, Lamberts RR, Sipkema P. Cross-talk between cardiac muscle and coronary vasculature. Physiol Rev 2006;86:1263–308.

    Google Scholar 

  62. Scaramucci J. Theoremata familiaria viros eruditos consulentia de variis physico-medicis lucubrationibus juxta leges mecanicas. Urbino: Italy. Apud Joannem Baptistam Bustum; 1696:70–81.

    Google Scholar 

  63. Matsumoto T, Kajiya F. Coronary microcirculation: physiology and mechanics. Fluid Dynam Res 2005;37:60–81.

    Google Scholar 

  64. Downey JM, Kirk ES. Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res 1975;36:753–60.

    Google Scholar 

  65. Cornelissen AJ, Dankelman J, VanBavel E, Spaan JA. Balance between myogenic, flow-dependent, and metabolic flow control in coronary arterial tree: a model study. Am J Physiol Heart Circ Physiol 2002;282:H2224–37.

    Google Scholar 

  66. Spaan JA. Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ Res 1985;56:293–309.

    Google Scholar 

  67. Krams R, Sipkema P, Zegers J, Westerhof N. Contractility is the main determinant of coronary systolic flow impediment. Am J Physiol 1989;257:H1936–44.

    Google Scholar 

  68. Krams R, Sipkema P, Westerhof N. Varying elastance concept may explain coronary systolic flow impediment. Am J Physiol 1989;257:H1471–9.

    Google Scholar 

  69. Vis MA, Sipkema P, Westerhof N. Modeling pressure-flow relations in cardiac muscle in diastole and systole. Am J Physiol 1997;272:H1516–26.

    Google Scholar 

  70. Toyota E, Fujimoto K, Ogasawara Y, Kajita T, Shigeto F, Matsumoto T, et al. Dynamic changes in three-dimensional architecture and vascular volume of transmural coronary microvasculature between diastolic- and systolic-arrested rat hearts. Circulation 2002;105:621–6.

    Google Scholar 

  71. Marcus ML, Chilian WM, Kanatsuka H, Dellsperger KC, Eastham CL, Lamping KG. Understanding the coronary circulation through studies at the microvascular level. Circulation 1990;82:1–7.

    Google Scholar 

  72. Toyota E, Ogasawara Y, Hiramatsu O, Tachibana H, Kajiya F, Yamamori S, et al. Dynamics of flow velocities in endocardial and epicardial coronary arterioles. Am J Physiol Heart Circ Physiol 2005;288:H1598–603.

    Google Scholar 

  73. Khir AW, O’Brien A, Gibbs JS, Parker KH. Determination of wave speed and wave separation in the arteries. J Biomech 2001;34: 1145–55.

    Google Scholar 

  74. Davies JE, Whinnett ZI, Francis DP, Willson K, Foale RA, Malik IS, et al. Use of simultaneous pressure and velocity measurements to estimate arterial wave speed at a single site in humans. Am J Physiol Heart Circ Physiol 2006;290:H878–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alun D. Hughes.

Rights and permissions

This is an open access article distributed under the CC BY-NC license. https://doi.org/creativecommons.org/licenses/by/4.0/

Reprints and permissions

About this article

Cite this article

Hughes, A.D., Parker, K.H. & Davies, J.E. Waves in arteries: A review of wave intensity analysis in the systemic and coronary circulations. Artery Res 2, 51–59 (2008). https://doi.org/10.1016/j.artres.2008.02.002

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.artres.2008.02.002

Keywords