Skip to main content

Magnetic resonance imaging in vascular biology

Summary

Symptoms are only the tip of the iceberg in atherosclerotic disease. Beneath the surface are multiple patho-physiological processes taking place in and around the vessel wall. The increasing knowledge in the field of vascular biology also reveals new imaging targets as biological markers of the disease. Promising targets particularly relate to the early detection of subjects at risk and monitoring of therapeutical efforts. Among other imaging modalities magnetic resonance imaging (MRI) is an emerging tool with strong potential and a favourable safety profile. This article summarizes the different approaches of imaging various facets of atherosclerotic disease by MRI. In particular, endothelial function, arterial stiffness, vessel remodeling, angiogenesis inside the vessel wall, vessel stenosis and plaque characterization are addressed. As such MRI is a very versatile diagnostic tool for vascular biology research with high diagnostic accuracy and reproducibility of its results. Moreover, MRI allows for comprehensive studies, applying several techniques within one exam.

References

  1. Verma S, Anderson TJ. Fundamentals of endothelial function for the clinical cardiologist. Circulation 2002;105:546−9.

    Google Scholar 

  2. Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992;340:1111−5.

    Google Scholar 

  3. Sorensen MB, Collins P, Ong PJ, Webb CM, Hayward CS, Asbury EA, et al. Long-term use of contraceptive depot medroxyprogesterone acetate in young women impairs arterial endothelial function assessed by cardiovascular magnetic resonance. Circulation 2002;106:1646−51.

    Google Scholar 

  4. Mitchell GF, Parise H, Vita JA, Larson MG, Warner E, Keaney Jr JF, et al. Local shear stress and brachial artery flow-mediated dilation: the Framingham Heart study. Hypertension 2004;44:134−9.

    Google Scholar 

  5. Silber HA, Ouyang P, Bluemke DA, Gupta SN, Foo TK, Lima JA. A novel method for assessing arterial endothelial function using phase contrast magnetic resonance imaging: vasoconstriction during reduced shear. J Cardiovasc Magn Reson 2005;7: 615−21.

    Google Scholar 

  6. Silber HA, Bluemke DA, Ouyang P, Du YP, Post WS, Lima JA. The relationship between vascular wall shear stress and flow-mediated dilation: endothelial function assessed by phase-contrast magnetic resonance angiography. J Am Coll Cardiol 2001;38:1859−65.

    Google Scholar 

  7. Silber HA, Ouyang P, Bluemke DA, Gupta SN, Foo TK, Lima JA. Why is flow-mediated dilation dependent on arterial size? Assessment of the shear stimulus using phase-contrast magnetic resonance imaging. Am J Physiol Heart Circ Physiol 2005;288:H822−8.

    Google Scholar 

  8. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 2002;39:257−65.

    Google Scholar 

  9. Oelhafen M, Schwitter J, Kozerke S, Luechinger R, Boesiger P. Assessing arterial blood flow and vessel area variations using real-time zonal phase-contrast MRI. J Magn Reson Imaging 2006;23:422−9.

    Google Scholar 

  10. Schwitter J, Oelhafen M, Wyss BM, Kozerke S, Amann-Vesti B, Luscher TF, et al. 2D-spatially-selective real-time magnetic resonance imaging for the assessment of microvascular function and its relation to the cardiovascular risk profile. J Cardi-ovasc Magn Reson 2006;8:759−69.

    Google Scholar 

  11. Wiesmann F, Petersen SE, Leeson PM, Francis JM, Robson MD, Wang Q, et al. Global impairment of brachial, carotid, and aortic vascular function in young smokers: direct quantification by high-resolution magnetic resonance imaging. J Am Coll Cardiol 2004;44:2056−64.

    Google Scholar 

  12. Anderson TJ. Arterial stiffness or endothelial dysfunction as a surrogate marker of vascular risk. Can J Cardiol 2006; 22(Suppl. B):B72−80.

    Google Scholar 

  13. Terashima M, Meyer CH, Keeffe BG, Putz EJ, de la Pena-Almaguer E, Yang PC, et al. Noninvasive assessment of coronary vasodilation using magnetic resonance angiography. J Am Coll Cardiol 2005;45:104−10.

    Google Scholar 

  14. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 1992;89:5951−5.

    Google Scholar 

  15. Utz W, Jordan J, Niendorf T, Stoffels M, Luft FC, Dietz R, et al. Blood oxygen level-dependent MRI of tissue oxygenation: relation to endothelium-dependent and endothelium-independent blood flow changes. Arterioscler Thromb Vasc Biol 2005;25: 1408−13.

    Google Scholar 

  16. Friedrich MG, Niendorf T, Schulz-Menger J, Gross CM, Dietz R. Blood oxygen level-dependent magnetic resonance imaging in patients with stress-induced angina. Circulation 2003;108: 2219−23.

    Google Scholar 

  17. Mohiaddin RH, Underwood SR, Bogren HG, Firmin DN, Klipstein RH, Rees RS, et al. Regional aortic compliance studied by magnetic resonance imaging: the effects of age, training, and coronary artery disease. Br Heart J 1989;62:90−6.

    Google Scholar 

  18. Mohiaddin RH, Firmin DN, Longmore DB. Age-related changes of human aortic flow wave velocity measured noninvasively by magnetic resonance imaging. J Appl Physiol 1993;74:492−7.

    Google Scholar 

  19. Resnick LM, Militianu D, Cunnings AJ, Pipe JG, Evelhoch JL, Soulen RL. Direct magnetic resonance determination of aortic distensibility in essential hypertension: relation to age, abdominal visceral fat, and in situ intracellular free magnesium. Hypertension 1997;30:654−9.

    Google Scholar 

  20. Rogers WJ, Hu YL, Coast D, Vido DA, Kramer CM, Pyeritz RE, et al. Age-associated changes in regional aortic pulse wave velocity. J Am Coll Cardiol 2001;38:1123−9.

    Google Scholar 

  21. Yu HY, Peng HH, Wang JL, Wen CY, Tseng WY. Quantification of the pulse wave velocity of the descending aorta using axial velocity profiles from phase-contrast magnetic resonance imaging. Magn Reson Med 2006;56:876−83.

    Google Scholar 

  22. Blankenhorn DH, Curry PJ. The accuracy of arteriography and ultrasound imaging for atherosclerosis measurement. A review. Arch Pathol Lab Med 1982;106:483−9.

    Google Scholar 

  23. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987;316:1371−5.

    Google Scholar 

  24. Pasterkamp G, Galis ZS, de Kleijn DP. Expansive arterial remodeling: location, location, location. Arterioscler Thromb Vasc Biol 2004;24:650−7.

    Google Scholar 

  25. Saito D, Oka T, Kajiyama A, Ohnishi N, Shiraki T. Factors predicting compensatory vascular remodelling of the carotid artery affected by atherosclerosis. Heart 2002;87:136−9.

    Google Scholar 

  26. Kaneko E, Skinner MP, Raines EW, Yuan C, Rosenfeld ME, Wight TN, et al. Detection of dissection and remodeling of atherosclerotic lesions in rabbits after balloon angioplasty by magnetic-resonance imaging. Coron Artery Dis 2000;11:599−606.

    Google Scholar 

  27. Worthley SG, Helft G, Fuster V, Zaman AG, Fayad ZA, Fallon JT, et al. Serial in vivo MRI documents arterial remodeling in experimental atherosclerosis. Circulation 2000;101:586−9.

    Google Scholar 

  28. Hegyi L, Hockings PD, Benson MG, Busza AL, Overend P, Grimsditch DC, et al. Short term arterial remodelling in the aortae of cholesterol fed New Zealand white rabbits shown in vivo by high-resolution magnetic resonance imaging − implications for human pathology. Pathol Oncol Res 2004;10:159−65.

    Google Scholar 

  29. Yuan C, Beach KW, Smith Jr LH, Hatsukami TS. Measurement of atherosclerotic carotid plaque size in vivo using high resolution magnetic resonance imaging. Circulation 1998;98:2666−71.

    Google Scholar 

  30. Kim WY, Stuber M, Bornert P, Kissinger KV, Manning WJ, Botnar RM. Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation 2002;106:296−9.

    Google Scholar 

  31. Fleiner M, Kummer M, Mirlacher M, Sauter G, Cathomas G, Krapf R, et al. Arterial neovascularization and inflammation in vulnerable patients: early and late signs of symptomatic atherosclerosis. Circulation 2004;110:2843−50.

    Google Scholar 

  32. Moreno PR, Purushothaman KR, Fuster V, Echeverri D, Truszczynska H, Sharma SK, et al. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: implications for plaque vulnerability. Circulation 2004; 110:2032−8.

    Google Scholar 

  33. Moulton KS. Angiogenesis in atherosclerosis: gathering evidence beyond speculation. Curr Opin Lipidol 2006;17:548−55.

    Google Scholar 

  34. Yuan C, Kerwin WS, Ferguson MS, Polissar N, Zhang S, Cai J, et al. Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging 2002;15:62−7.

    Google Scholar 

  35. Kerwin W, Hooker A, Spilker M, Vicini P, Ferguson M, Hatsukami T, et al. Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque. Circulation 2003;107:851−6.

    Google Scholar 

  36. O’Connor JP, Jackson A, Parker GJ, Jayson GC. DCE-MRI bio-markers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br J Cancer 2007;96:189−95.

    Google Scholar 

  37. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 2005;25: 2054−61.

    Google Scholar 

  38. Takaya N, Yuan C, Chu B, Saam T, Polissar NL, Jarvik GP, et al. Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study. Circulation 2005;111:2768−75.

    Google Scholar 

  39. Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 2003;108:2270−4.

    Google Scholar 

  40. Winter PM, NeubauerAM,CaruthersSD,Harris TD, Robertson JD, Williams TA, et al. Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 2006;26:2103−9.

    Google Scholar 

  41. Cai W, Chen X. Anti-angiogenic cancer therapy based on integrin alphavbeta3 antagonism. Anticancer Agents Med Chem 2006;6:407−28.

    Google Scholar 

  42. Zhang C, Jugold M, Woenne EC, Lammers T, Morgenstern B, Mueller MM, et al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res 2007;67:1555−62.

    Google Scholar 

  43. Nederkoorn PJ, van der Graaf Y, Hunink MG. Duplex ultrasound and magnetic resonance angiography compared with digital subtraction angiography in carotid artery stenosis: a systematic review. Stroke 2003;34:1324−32.

    Google Scholar 

  44. Koelemay MJ, Lijmer JG, Stoker J, Legemate DA, Bossuyt PM. Magnetic resonance angiography for the evaluation of lower extremity arterial disease: a meta-analysis. JAMA 2001;285: 1338−45.

    Google Scholar 

  45. Sommerville RS, Jenkins J, Walker P, Olivotto R. 3-D magnetic resonance angiography versus conventional angiography in peripheral arterial disease: pilot study. ANZ J Surg 2005;75: 373−7.

    Google Scholar 

  46. Tan KT, van Beek EJ, Brown PW, van Delden OM, Tijssen J, Ramsay LE. Magnetic resonance angiography for the diagnosis of renal artery stenosis: a meta-analysis. Clin Radiol 2002; 57:617−24.

    Google Scholar 

  47. Vasbinder GB, Nelemans PJ, Kessels AG, Kroon AA, Maki JH, Leiner T, et al. Accuracy of computed tomographic angiography and magnetic resonance angiography for diagnosing renal artery stenosis. Ann Intern Med 2004;141:674−82. discussion 682.

    Google Scholar 

  48. Nael K, Ruehm SG, Michaely HJ, Saleh R, Lee M, Laub G, et al. Multistation whole-body high-spatial-resolution MR angiography using a 32-channel MR system. AJR Am J Roentgenol 2007;188:529−39.

    Google Scholar 

  49. Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 2001;345:1863−9.

    Google Scholar 

  50. Sakuma H, Ichikawa Y, Suzawa N, Hirano T, Makino K, Koyama N, et al. Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography. Radiology 2005;237:316−21.

    Google Scholar 

  51. Paetsch I, Jahnke C, Barkhausen J, Spuentrup E, Cavagna F, Schnackenburg B, et al. Detection of coronary stenoses with contrast enhanced, three-dimensional free breathing coronary MR angiography using the gadolinium-based intravascular contrast agent gadocoletic acid (B-22956). J Cardiovasc Magn Reson 2006;8:509−16.

    Google Scholar 

  52. Metz LD, Beattie M, Hom R, Redberg RF, Grady D, Fleischmann KE. The prognostic value of normal exercise myocardial perfusion imaging and exercise echocardiography: a meta-analysis. J Am Coll Cardiol 2007;49:227−37.

    Google Scholar 

  53. Schuijf JD, Wijns W, Jukema JW, Atsma DE, de Roos A, Lamb HJ, et al. Relationship between noninvasive coronary angiography with multi-slice computed tomography and myo-cardial perfusion imaging. J Am Coll Cardiol 2006;48:2508−14.

    Google Scholar 

  54. Tracy RE, Devaney K, Kissling G. Characteristics of the plaque under a coronary thrombus. Virchows Arch A Pathol Anat Histopathol 1985;405:411−27.

    Google Scholar 

  55. Falk E. Why do plaques rupture? Circulation 1992;86:III30−42.

    Google Scholar 

  56. Toussaint JF, LaMuraglia GM, Southern JF, Fuster V, Kantor HL. Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 1996;94:932−8.

    Google Scholar 

  57. Hatsukami TS, Ross R, Polissar NL, Yuan C. Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation 2000;102:959−64.

    Google Scholar 

  58. Yuan C, Mitsumori LM, Ferguson MS, Polissar NL, Echelard D, Ortiz G, et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and in-traplaque hemorrhage in advanced human carotid plaques. Circulation 2001;104:2051−6.

    Google Scholar 

  59. Saam T, Kerwin WS, Chu B, Cai J, Kampschulte A, Hatsukami TS, et al. Sample size calculation for clinical trials using magnetic resonance imaging for the quantitative assessment of carotid atherosclerosis. J Cardiovasc Magn Reson 2005; 7:799−808.

    Google Scholar 

  60. Trivedi RA, JM UK-I, Graves MJ, Horsley J, Goddard M, Kirkpatrick PJ, et al. MRI-derived measurements of fibrous-cap and lipid-core thickness: the potential for identifying vulnerable carotid plaques in vivo. Neuroradiology 2004;46:738−43.

    Google Scholar 

  61. Cai J, Hatsukami TS, Ferguson MS, Kerwin WS, Saam T, Chu B, et al. In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology. Circulation 2005;112: 3437−44.

    Google Scholar 

  62. Fayad ZA, Nahar T, Fallon JT, Goldman M, Aguinaldo JG, Badimon JJ, et al. In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta: a comparison with transesophageal echocardiography. Circulation 2000; 101:2503−9.

    Google Scholar 

  63. Botnar RM, Stuber M, Kissinger KV, Kim WY, Spuentrup E, Manning WJ. Noninvasive coronary vessel wall and plaque imaging with magnetic resonance imaging. Circulation 2000;102: 2582−7.

    Google Scholar 

  64. Yarnykh VL, Terashima M, Hayes CE, Shimakawa A, Takaya N, Nguyen PK, et al. Multicontrast black-blood MRI of carotid arteries: comparison between 1.5 and 3 tesla magnetic field strengths. J Magn Reson Imaging 2006;23:691−8.

    Google Scholar 

  65. Viereck J, Ruberg FL, Qiao Y, Perez AS, Detwiller K, Johnstone M, et al. MRI of atherothrombosis associated with plaque rupture. Arterioscler Thromb Vasc Biol 2005;25:240−5.

    Google Scholar 

  66. Barkhausen J, Ebert W, Heyer C, Debatin JF, Weinmann HJ. Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging. Circulation 2003;108:605−9.

    Google Scholar 

  67. McConnell MV, Aikawa M, Maier SE, Ganz P, Libby P, Lee RT. MRI of rabbit atherosclerosis in response to dietary cholesterol lowering. Arterioscler Thromb Vasc Biol 1999;19:1956−9.

    Google Scholar 

  68. Helft G, Worthley SG, Fuster V, Fayad ZA, Zaman AG, Corti R, et al. Progression and regression of atherosclerotic lesions: monitoring with serial noninvasive magnetic resonance imaging. Circulation 2002;105:993−8.

    Google Scholar 

  69. Corti R, Osende JI, Fallon JT, Fuster V, Mizsei G, Jneid H, et al. The selective peroxisomal proliferator-activated receptor-gamma agonist has an additive effect on plaque regression in combination with simvastatin in experimental atherosclerosis: in vivo study by high-resolution magnetic resonance imaging. J Am Coll Cardiol 2004;43:464−73.

    Google Scholar 

  70. Zhao XQ, Yuan C, Hatsukami TS, Frechette EH, Kang XJ, Maravilla KR, et al. Effects of prolonged intensive lipid-lowering therapy on the characteristics of carotid atherosclerotic plaques in vivo by MRI: a case-control study. Arterioscler Thromb Vasc Biol 2001;21:1623−9.

    Google Scholar 

  71. Corti R, Fuster V, Fayad ZA, Worthley SG, Helft G, Smith D, et al. Lipid lowering by simvastatin induces regression of human atherosclerotic lesions: two years’ follow-up by high-resolution noninvasive magnetic resonance imaging. Circulation 2002;106:2884−7.

    Google Scholar 

  72. Yonemura A, Momiyama Y, Fayad ZA, Ayaori M, Ohmori R, Higashi K, et al. Effect of lipid-lowering therapy with atorvastatin on atherosclerotic aortic plaques detected by noninvasive magnetic resonance imaging. J Am Coll Cardiol 2005; 45:733−42.

    Google Scholar 

  73. Saam T, Ferguson MS, Yarnykh VL, Takaya N, Xu D, Polissar NL, et al. Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol 2005;25:234−9.

    Google Scholar 

  74. Yuan C, Zhang SX, Polissar NL, Echelard D, Ortiz G, Davis JW, et al. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient is-chemic attack or stroke. Circulation 2002;105:181−5.

    Google Scholar 

  75. Takaya N, Yuan C, Chu B, Saam T, Underhill H, Cai J, et al. Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI−initial results. Stroke 2006;37:818−23.

    Google Scholar 

  76. Kampschulte A, Ferguson MS, Kerwin WS, Polissar NL, Chu B, Saam T, et al. Differentiation of intraplaque versus juxtaluminal hemorrhage/thrombus in advanced human carotid atherosclerotic lesions by in vivo magnetic resonance imaging. Circulation 2004;110:3239−44.

    Google Scholar 

  77. Kooi ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003;107:2453−8.

    Google Scholar 

  78. Trivedi RA, JM UK-I, Graves MJ, Cross JJ, Horsley J, Goddard MJ, et al. In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall super-paramagnetic particles of iron oxide-enhanced MRI. Stroke 2004;35:1631−5.

    Google Scholar 

  79. Trivedi RA, Mallawarachi C, JM UK-I, Graves MJ, Horsley J, Goddard MJ, et al. Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macro-phages. Arterioscler Thromb Vasc Biol 2006;26:1601−6.

    Google Scholar 

  80. Frias JC, Williams KJ, Fisher EA, Fayad ZA. Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J Am Chem Soc 2004;126:16316−7.

    Google Scholar 

  81. Botnar RM, Buecker A, Wiethoff AJ, Parsons Jr EC, Katoh M, Katsimaglis G, et al. In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent. Circulation 2004;110:1463−6.

    Google Scholar 

  82. Querol M, Chen JW, Bogdanov Jr AA. A paramagnetic contrast agent with myeloperoxidase-sensing properties. Org Biomol Chem 2006;4:1887−95.

    Google Scholar 

  83. Sirol M, Aguinaldo JG, Graham PB, Weisskoff R, Lauffer R, Mizsei G, et al. Fibrin-targeted contrast agent for improvement of in vivo acute thrombus detection with magnetic resonance imaging. Atherosclerosis 2005;182:79−85.

    Google Scholar 

  84. Jaffer FA, Libby P, Weissleder R. Molecular and cellular imaging of atherosclerosis: emerging applications. J Am Coll Cardiol 2006;47:1328−38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias G. Friedrich.

Additional information

Grant support: M. Voehringer is supported by a research scholarship of Robert-Bosch Foundation, Germany, and is a trainee in the strategic training programme TORCH of University of Calgary and University of Alberta.

Rights and permissions

This is an open access article distributed under the CC BY-NC license. https://doi.org/creativecommons.org/licenses/by/4.0/

Reprints and permissions

About this article

Cite this article

Voehringer, M., Sechtem, U. & Friedrich, M.G. Magnetic resonance imaging in vascular biology. Artery Res 2, 9–20 (2008). https://doi.org/10.1016/j.artres.2008.01.002

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.artres.2008.01.002

Keywords