Skip to main content

Identifying the vulnerable plaque: A review of invasive and non-invasive imaging modalities

Summary

Atherosclerotic cardiovascular disease is the current leading cause of death in industrialized countries. The vast majority of acute cardiovascular events (50–70%) are ascribed to thrombosis following rupture of a vulnerable plaque. Therefore there is an urgent need to discern vulnerable, unstable plaques from stable plaques. A variety of imaging modalities, both invasive and non-invasive, have been developed for the assessment of visualization and quantification of atherosclerosis. In this review, we discuss the advantages and limitations of the available imaging techniques, and their clinical potential for assessment of plaque vulnerability.

References

  1. Vaina S, Stefanadis C. Detection of the vulnerable coronary atheromatous plaque. Where are we now? Int J Cardiovasc Intervent 2005;7(2):75–87.

    Google Scholar 

  2. Shah PK. Mechanisms of plaque vulnerability and rupture. J Am Coll Cardiol 2003;41(4 Suppl. S):15S–22S.

    Google Scholar 

  3. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis e the good, the bad, and the ugly. Circulation Res 2002;90(3):251–62.

    Google Scholar 

  4. Davies MJ. Stability and instability: two faces of coronary atherosclerosis e the Paul Dudley White Lecture 1995. Circulation 1996;94(8):2013–20.

    Google Scholar 

  5. Davies JR, Rudd JF, Fryer TD, Weissberg PL. Targeting the vulnerable plaque: the evolving role of nuclear imaging. J Nucl Cardiol 2005;12(2):234–46.

    Google Scholar 

  6. Shanahan CM, Weissberg PL. Smooth muscle cell heterogeneity – patterns of gene expression in vascular smooth muscle cells in vitro and in vivo. Arterioscler Thromb Vasc Biol 1998;18(3): 333–8.

    Google Scholar 

  7. Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 2001;104(3):365–72.

    Google Scholar 

  8. Hao HY, Gabbiani G, Bochaton-Piallat ML. Arterial smooth muscle cell heterogeneity – implications for atherosclerosis and restenosis development. Arterioscler Thromb Vasc Biol 2003;23(9):1510–20.

    Google Scholar 

  9. Rudd JH, Davies JR, Weissberg PL. Imaging of atherosclerosis – can we predict plaque rupture? Trends Cardiovasc Med 2005; 15(1):17–24.

    Google Scholar 

  10. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, et al. From vulnerable plaque to vulnerable patient – a call for new definitions and risk assessment strategies: Part I. Circulation 2003;108(14):1664–72.

    Google Scholar 

  11. Fayad ZA, Fuster V. Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circ Res 2001;89(4): 305–16.

    Google Scholar 

  12. MacNeill BD, Lowe HC, Takano M, Fuster V, Jang IK. Intravascular modalities for detection of vulnerable plaque: current status. Arterioscler Thromb Vasc Biol 2003;23(8):1333–42.

    Google Scholar 

  13. Farb A, Burke AP, Tang AL, Liang TY, Mannan P, Smialek J, et al. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996;93(7):1354–63.

    Google Scholar 

  14. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death – a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20(5):1262–75.

    Google Scholar 

  15. Schroeder AP, Falk E. Vulnerable and dangerous coronary plaques. Atherosclerosis 1995;118(Suppl):S141–9.

    Google Scholar 

  16. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995;92(3):657–71.

    Google Scholar 

  17. Ambrose JA, Tannenbaum MA, Alexopoulos D, Hjemdahl-Monsen CE, Leavy J, Weiss M, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988;12(1):56–62.

    Google Scholar 

  18. Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, et al. Can coronary angiography predict the site of a subsequent myocardial-infarction in patients with mild-to-moderate coronary-artery disease. Circulation 1988;78(5):1157–66.

    Google Scholar 

  19. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary-arteries. N Engl J Med 1987;316(22): 1371–5.

    Google Scholar 

  20. Crouse JR, Goldbourt U, Evans G, Pinsky J, Sharrett AR, Sorlie P, et al. Arterial enlargement in the atherosclerosis risk in communities (Aric) cohort – in-vivo quantification of carotid arterial enlargement. Stroke 1994;25(7):1354–9.

    Google Scholar 

  21. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull Jr W, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995;92(5):1355–74.

    Google Scholar 

  22. Landini L, Santarelli MF, Pingitore A, Positano V. New technological developments in the clinical imaging of atherosclerotic plaque. Curr Pharm Des 2003;9(29):2403–15.

    Google Scholar 

  23. Galbraith JE, Murphy ML, Desoyza N. Coronary angiogram interpretation – interobserver variability. Jama-J Am Med Assoc 1978;240(19):2053–6.

    Google Scholar 

  24. Zir LM, Miller SW, Dinsmore RE, Gilbert JP, Harthorne JW. Interobserver variability in coronary angiography. Circulation 1976;53(4):627–32.

    Google Scholar 

  25. Topol EJ, Nissen SE. Our preoccupation with coronary luminology – the dissociation between clinical and angiographic findings in ischemic-heart-disease. Circulation 1995;92(8):2333–42.

    Google Scholar 

  26. Nissen SE, Yock P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation 2001;103(4):604–16.

    Google Scholar 

  27. Hiro T, Leung CY, deGuzman S, Caiozzo VJ, Farvid AR, Karimi H, et al. Are soft echoes really soft? Intravascular ultrasound assessment of mechanical properties in human atherosclerotic tissue. Am Heart J 1997;133(1):1–7.

    Google Scholar 

  28. Peters RJ, Kok WE, Havenith MG, Rijsterborgh H, van der Wal AC, Visser CA. Histopathologic validation of intracoronary ultrasound imaging. J Am Soc Echocardiogr 1994;7(3 Pt 1): 230–41.

    Google Scholar 

  29. Stone GW, Hodgson JM, Stgoar FG, Frey A, Mudra H, Sheehan H, et al. Improved procedural results of coronary angioplasty with intravascular ultrasound-guided balloon sizing – The CLOUT pilot trial. Circulation 1997;95(8):2044–52.

    Google Scholar 

  30. Carlier SG, Tanaka K. Studying coronary plaque regression with IVUS: a critical review of recent studies. J Interv Cardiol 2006; 19(1):11–5.

    Google Scholar 

  31. Machado JC, Foster FS. Ultrasonic integrated backscatter coefficient profiling of human coronary arteries in vitro. IEEE Trans Ultrason Ferroelectr Freq Control 2001;48(1): 17–27.

    Google Scholar 

  32. Kawasaki M, Takatsu H, Noda T, Ito Y, Kunishima A, Arai M, et al. Non-invasive quantitative tissue characterization and two-dimensional color-coded map of human atherosclerotic lesions using ultrasound integrated backscatter – comparison between histology and integrated backscatter images. J Am College Cardiol 2001;38(2):486–92.

    Google Scholar 

  33. Sano K, Kawasaki M, Ishihara Y, Mao M, Tsuchlya K, Nishigaki K, et al. Assessment of vulnerable plaques causing acute coronary syndrome using integrated backscatter intravascular ultrasound. J Am Coll Cardiol 2006;47(4):734–41.

    Google Scholar 

  34. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 2002; 106(17):2200–6.

    Google Scholar 

  35. Konig A, Klauss V. Virtual histology. Heart 2007;93(8):977–82.

    Google Scholar 

  36. Moore MP, Spencer T, Salter DM, Kearney PP, Shaw TRD, Starkey IR, et al. Characterisation of coronary atherosclerotic morphology by spectral analysis of radiofrequency signal: in vitro intravascular ultrasound study with histological and radiological validation. Heart 1998;79(5):459–67.

    Google Scholar 

  37. Nair A, Calvetti D, Vince DG. Regularized autoregressive analysis of intravascular ultrasound backscatter: improvement in spatial accuracy of tissue maps. IEEE Trans Ultrason Ferroelectr Freq Control 2004;51(4):420–31.

    Google Scholar 

  38. Diethrich EB, Margolis MP, Reid DB, Burke A, Ramaiah V, Rodriguez-Lopez JA, et al. Virtual histology intravascular ultrasound assessment of carotid artery disease: The Carotid Artery Plaque Virtual histology evaluation (CAPITAL) study. J Endovasc Ther 2007;14(5):676–86.

    Google Scholar 

  39. Cespedes I, Ophir J, Ponnekanti H, Maklad N. Elastography – elasticity imaging using ultrasound with application to muscle and breast in-vivo. Ultrason Imag 1993;15(2):73–88.

    Google Scholar 

  40. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography – a quantitative method for imaging the elasticity of biological tissues. Ultrason Imag 1991;13(2):111–34.

    Google Scholar 

  41. Schaar JA, van der Steen AFW, Mastik F, Baldewsing RA, Serruys PW. Intravascular palpography for vulnerable plaque assessment. J Am Coll Cardiol 2006;47(8):C86–91.

    Google Scholar 

  42. De Korte CL, Sierevogel MJ, Mastik F, Strijder C, Schaar JA, Velema E, et al. Identification of atherosclerotic plaque components with intravascular ultrasound elastography in vivo A Yucatan pig study. Circulation 2002;105(14): 1627–30.

    Google Scholar 

  43. De Korte CL, Pasterkamp G, van der Steen AFW, Woutman HA, Bom N. Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro. Circulation 2000;102(6):617–23.

    Google Scholar 

  44. Schaar JA, Mastik F, Regar E, den Uil CA, Gijsen FJ, Wentzel JJ, et al. Current diagnostic modalities for vulnerable plaque detection. Curr Pharm Des 2007;13(10):995–1001.

    Google Scholar 

  45. Schaar JA, Regar E, Mastik F, McFadden EP, Saia F, Disco C, et al. Incidence of high-strain patterns in human coronary arteries – assessment with three-dimensional intravascular palpography and correlation with clinical presentation. Circulation 2004;109(22):2716–9.

    Google Scholar 

  46. Teirstein PS, Schatz RA, Denardo SJ, Jensen EE, Johnson AD. Angioscopic versus angiographic detection of thrombus during coronary interventional procedures. Am J Cardiol 1995; 75(16):1083–7.

    Google Scholar 

  47. Uretsky BF, Denys BG, Counihan PC, Ragosta M. Angioscopic evaluation of incompletely obstructing coronary intraluminal filling defects – comparison to angiography. Cathet Cardiovasc Diagn 1994;33(4):323–9.

    Google Scholar 

  48. Uchida Y, Nakamura F, Tomaru T, Morita T, Oshima T, Sasaki T, et al. Prediction of acute coronary syndromes by percutaneous coronary angioscopy in patients with stable angina. Am Heart J 1995;130(2):195–203.

    Google Scholar 

  49. Stefanadis C, Vavuranakis M, Toutouzas P. Vulnerable plaque: the challenge to identify and treat it. J Interv Cardiol 2003 Jun;16(3):273–80.

    Google Scholar 

  50. Miyamoto A, Prieto AR, Friedl SE, Lin FC, Muller JE, Nesto RW, et al. Atheromatous plaque cap thickness can be determined by quantitative color analysis during angioscopy: implications for identifying the vulnerable plaque. Clin Cardiol 2004; 27(1):9–15.

    Google Scholar 

  51. Cademartiri F, La Grutta L, Palumbo A, Maffei E, Aldrovandi A, Malago R, et al. Imaging techniques for the vulnerable coronary plaque. Radiol Med 2007;112(5):637–59.

    Google Scholar 

  52. Manfrini O, Mont E, Leone O, Arbustini E, Eusebi V, Virmani R, et al. Sources of error and interpretation of plaque morphology by optical coherence tomography. Am J Cardiol 2006;98(2): 156–9.

    Google Scholar 

  53. Kawasaki M, Bouma BE, Bressner J, Houser SL, Nadkarni SK, MacNeill BD, et al. Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques. J Am Coll Cardiol 2006;48(1):81–8.

    Google Scholar 

  54. Yabushita H, Bourna BE, Houser SL, Aretz T, Jang IK, Schlendorf KH, et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation 2002; 106(13):1640–5.

    Google Scholar 

  55. Kubo T, Imanishi T, Takarada S, Kuroi A, Ueno S, Yamano T, et al. Assessment of culprit lesion morphology in acute myocar-dial infarction – ability of optical coherence tomography compared with intravascular ultrasound and coronary angio-scopy. J Am Coll Cardiol 2007;50(10):933–9.

    Google Scholar 

  56. MacNeill BD, Jang IK, Bouma BE, Iftimia N, Takano M, Yabushita H, et al. Focal and multi-focal plaque distributions in patients with macrophage acute and stable presentations of coronary artery disease. J Am Coll Cardiol 2004;44(5): 972–9.

    Google Scholar 

  57. Yun SH, Tearney GJ, Vakoc BJ, Shishkov M, Oh WY, Desjardins AE, et al. Comprehensive volumetric optical microscopy in vivo. Nat Med 2006;12(12):1429–33.

    Google Scholar 

  58. Brezinski M. Characterizing arterial plaque with optical coherence tomography. Curr Opin Cardiol 2002;17(6):648–55.

    Google Scholar 

  59. Casscells W, Hathorn B, David M, Krabach T, Vaughn WK, McAllister HA, et al. Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis. Lancet 1996;347(9013): 1447–9.

    Google Scholar 

  60. Stefanadis C, Toutouzas K, Tsiamis E, Stratos C, Vavuranakis M, Kallikazaros I, et al. Increased local temperature in human coronary atherosclerotic plaques: an independent predictor of clinical outcome in patients undergoing a percutaneous coronary intervention. J Am Coll Cardiol 2001;37(5): 1277–83.

    Google Scholar 

  61. Madjid M, Willerson JT, Casscells SW. Intracoronary thermogra-phy for detection of high-risk vulnerable plaques. J Am Coll Cardiol 2006 Apr 18;47(Suppl. 8):C80–5.

    Google Scholar 

  62. Verheye S, Van Langenhove G, Diamantopoulos L, Serruys PW, Vermeersch P. Temperature heterogeneity is nearly absent in angiographically normal or mild atherosclerotic coronary segments: interim results from a safety study. Am J Cardiol 2002;90(6A):24H.

    Google Scholar 

  63. Moreno PR, Lodder RA, Purushothaman KR, Charash WE, O’Connor WN, Muller JE. Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 2002; 105(8):923–7.

    Google Scholar 

  64. Romer TJ, Brennan JFI, Puppels GJ, Zwinderman AH, van Duinen SG, van der LA, et al. Intravascular ultrasound combined with Raman spectroscopy to localize and quantify cholesterol and calcium salts in atherosclerotic coronary arteries. Arterioscler Thromb Vasc Biol 2000 Feb;20(2): 478–83.

    Google Scholar 

  65. Bhatia V, Bhatia R, Dhindsa S, Dhindsa M. Imaging of the vulnerable plaque: new modalities. South Med J 2003 Nov;96(11): 1142–7.

    Google Scholar 

  66. van de Poll SW, Romer TJ, Puppels GJ, van der LA. Raman spec-troscopy of atherosclerosis. J Cardiovasc Risk 2002 Oct;9(5): 255–61.

    Google Scholar 

  67. O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. N Engl J Med 1999;340(1):14–22.

    Google Scholar 

  68. Hollander M, Hak AE, Koudstaal PJ, Bots ML, Grobbee DE, Hofman A, et al. Comparison between measures of atherosclerosis and risk of stroke – The Rotterdam Study. Stroke 2003; 34(10):2367–72.

    Google Scholar 

  69. Hoeks APG, Brands PJ, Smeets FAM, Reneman RS. Assessment of the distensibility of superficial arteries. Ultrasound Med Biol 1990;16(2):121–8.

    Google Scholar 

  70. Hiltawsky KM, Wiegratz A, Enderle MD, Ermert H. Real-time detection of vessel diameters with ultrasound. Biomed Technik 2003;48(5):141–6.

    Google Scholar 

  71. Nederkoorn PJ, van der Graaf Y, Hunink M. Duplex ultrasound and magnetic resonance angiography compared with digital subtraction angiography in carotid artery stenosis – a systematic review. Stroke 2003;34(5):1324–31.

    Google Scholar 

  72. James G, Raggi P. Electron beam tomography as a non-invasive method to monitor effectiveness of antiatherosclerotic therapy. Curr Drug Targets Cardiovasc Haematol Disord 2004; 4(2):177–81.

    Google Scholar 

  73. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 2003; 228(3):826–33.

    Google Scholar 

  74. Escolar E, Weigold G, Fuisz A, Weissman NJ. New imaging techniques for diagnosing coronary artery disease. Can Med Assoc J 2006;174(4):487–95.

    Google Scholar 

  75. Cordeiro MAS, Lima JAC. Atherosclerotic plaque characterization by multidetector row computed tomography angiography. J Am Coll Cardiol 2006;47(8):C40–7.

    Google Scholar 

  76. Pohle K, Achenbach S, MacNeill B, Ropers D, Ferencik M, Moselewski F, et al. Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS. Atherosclerosis 2007;190(1):174–80.

    Google Scholar 

  77. Saba L, Sanfilippo R, Pirisi R, Pascalis L, Montisci R, Mallarini G. Multidetector-row CT angiography in the study of atherosclerotic carotid arteries. Neuroradiology 2007;49(8):623–37.

    Google Scholar 

  78. Romano M, Mainenti PP, Imbriaco M, Amato B, Markabaoui K, Tamburrini O, et al. Multidetector row CT angiography of the abdominal aorta and lower extremities in patients with peripheral arterial occlusive disease: diagnostic accuracy and inter-observer agreement. Eur J Radiol 2004;50(3):303–8.

    Google Scholar 

  79. Fuster V, Fayad ZA, Moreno PR, Poon M, Corti R, Badimon JJ. Atherothrombosis and high-risk plaque – Part II: approaches by non-invasive computed tomographic/magnetic resonance imaging. J Am Coll Cardiol 2005;46(7):1209–18.

    Google Scholar 

  80. Hatsukami TS, Ross R, Polissar NL, Yuan C. Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging. Circulation 2000;102(9):959–64.

    Google Scholar 

  81. Fayad ZA, Nahar T, Fallon JT, Goldman M, Aguinaldo JG, Badimon JJ, et al. In vivo magnetic resonance evaluation of atherosclerotic plaques in the human thoracic aorta – a comparison with transesophageal echocardiography. Circulation 2000;101(21):2503–9.

    Google Scholar 

  82. Sipkins DA, Gijbels K, Tropper FD, Bednarski M, Li KCP, Steinman L. ICAM-1 expression in autoimmune encephalitis visualized using magnetic resonance imaging. J Neuroimmunol 2000;104(1):1–9.

    Google Scholar 

  83. Fayad ZA, Fallon JT, Shinnar M, Wehrli S, Dansky HM, Poon M, et al. Non-invasive in vivo high-resolution magnetic resonance imaging of atherosclerotic lesions in genetically engineered mice. Circulation 1998;98(15):1541–7.

    Google Scholar 

  84. Fayad ZA, Hardy CJ, Giaquinto R, Kini AS, Fuster V. Improved high resolution MRI of human coronary lumen and plaque with a new cardiac coil. Circulation 2000;102(18):399.

    Google Scholar 

  85. Klein IF, Lavallee PC, Touboul PJ, Schouman-Claeys E, Amarenco P. In vivo middle cerebral artery plaque imaging by high-resolution MRI. Neurology 2006;67(2):327–9.

    Google Scholar 

  86. Choudhury RP, Fuster V, Badimon JJ, Fisher EA, Fayad ZA. MRI and characterization of atherosclerotic plaque – emerging applications and molecular imaging. Arterioscler Thromb Vasc Biol 2002;22(7):1065–74.

    Google Scholar 

  87. Kooi ME, Cappendijk VC, Cleutjens KBJM, Kessels AGH, Kitslaar PJEH, Borgers M, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003;107(19):2453–8.

    Google Scholar 

  88. Trivedi RA, Mallawarachi C, King-Im JM, Graves MJ, Horsley J, Goddard MJ, et al. Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol 2006;26(7):1601–6.

    Google Scholar 

  89. Saam T, Ferguson MS, Yarnykh VL, Takaya N, Xu D, Polissar NL, et al. Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol 2005;25(1): 234–9.

    Google Scholar 

  90. Herborn CU, Vogt FM, Lauenstein TC, Dirsch O, Corot C, Robert P, et al. Magnetic resonance imaging of experimental atherosclerotic plaque: comparison of two ultrasmall super-paramagnetic particles of iron oxide. J Magn Reson Imag 2006;24(2):388–93.

    Google Scholar 

  91. Lipinski MJ, Frias JC, Fayad ZA. Advances in detection and characterization of atherosclerosis using contrast agents targeting the macrophage. J Nucl Cardiol 2006;13(5):699–709.

    Google Scholar 

  92. Davies JR, Rudd JHF, Weissberg PL, Narula J. Radionuclide imaging for the detection of inflammation in vulnerable plaques. J Am Coll Cardiol 2006;47(8):C57–68.

    Google Scholar 

  93. Phelps ME, Hoffman EJ, Selin C, Huang SC, Robinson G, Macdonald N, et al. Investigation of [F-18] 2-fluoro-2-deoxyglu-cose for measure of myocardial glucose-metabolism. J Nucl Med 1978;19(12):1311–9.

    Google Scholar 

  94. Rudd JHF, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [F-18]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105(23):2708–11.

    Google Scholar 

  95. Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al. F-18-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 2004;45(7):1245–50.

    Google Scholar 

  96. Tsimikas S, Palinski W, Halpern SE, Yeung DW, Curtiss LK, Witztum JL. Radiolabeled MDA2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo. J Nucl Cardiol 1999;6(1):41–53.

    Google Scholar 

  97. Tatsumi M, Cohade C, Nakamoto Y, Wahl RL. Fluorodeoxyglu-cose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology 2003;229(3):831–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc M. Van Bortel.

Rights and permissions

This is an open access article distributed under the CC BY-NC license. https://doi.org/creativecommons.org/licenses/by/4.0/

Reprints and permissions

About this article

Cite this article

Kips, J.G., Segers, P. & Van Bortel, L.M. Identifying the vulnerable plaque: A review of invasive and non-invasive imaging modalities. Artery Res 2, 21–34 (2008). https://doi.org/10.1016/j.artres.2007.11.002

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.artres.2007.11.002

Keywords