Skip to main content

Molecular determinants of arterial stiffness

Summary

Arterial stiffness has an independent predictive value for cardiovascular events. This review proposes an integrated view of the molecular determinants of arterial stiffness, based on a candidate gene approach, an analysis of the structure—function relationship in hypertension, and studies on gene expression profile in humans. In monogenic diseases of connective tissue (Marfan, Williams, and Ehlers—Danlos syndromes) and corresponding animal models, the precise characterization of arterial phenotype allows understanding the influence of abnormal, genetically determined, wall components on arterial stiffness. These studies underline the role of extra-cellular matrix signaling in the vascular wall and the fact that elastin and collagen have not only passive elastic or rigid properties, but also are implicated in the control of SMC function. In animal models of essential hypertension (SHR and SHR-SP), the structural modifications of the arterial wall include a higher number of elastin/SMC connections, and smaller fenestrations of the internal elastic lamina, which could redistribute the mechanical load towards elastic materials. Thus, the changes in arterial wall material which accompany wall hypertrophy in these animals are not associated with an increased stiffness. Taken together, these data afford strong arguments to consider that arterial stiffness is not only influenced by the amount and density of stiff wall material, but mainly by its spatial organization.

References

  1. Safar M, Laurent S, Safavian A, Pannier B, London G. Pulse pressure in sustained essential hypertension: a hemodynamic study. J Hypertens 1987;5:213–8.

    Google Scholar 

  2. O’Rourke M, Frohlich ED. Pulse pressure. Is it a clinically useful risk factor? Hypertension 1999;34:372–4.

    Google Scholar 

  3. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 2006;27:2588–605.

    Google Scholar 

  4. Bizbiz L, Alperovitch A, Robert L. Aging of the vascular wall: serum concentration of elastin peptides and elastase inhibitors in relation to cardiovascular risk factors. The EVA study. Atherosclerosis 1997;131:73–8.

    Google Scholar 

  5. Lakatta EG. Cardiovascular regulatory mechanisms in advanced age. Physiol Rev 1993;73:413–67.

    Google Scholar 

  6. Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiol-ogy, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol 2005;25:932–43.

    Google Scholar 

  7. McEniery CM, Wilkinson IB. Large artery stiffness and inflammation. J Hum Hypertens 2005;19:507–9.

    Google Scholar 

  8. Tyson KL, Reynolds JL, McNair R, Zhang Q, Weissberg P, Shanahan CM. Osteo/chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler Thromb Vasc Biol 2003; 23: 489–94.

    Google Scholar 

  9. Germain DP, Boutouyrie P, Laloux B, Laurent S. Arterial remodeling and stiffness in patients with pseudoxanthoma elasticum. Arterioscler Thromb Vasc Biol 2003;23:836–41.

    Google Scholar 

  10. Tsipouras P, Del Mastro R, Sarfarazi M, Lee B, Vitale E, Child AH, et al. Genetic linkage of the Marfan syndrome, ecto-pia lentis, and congenital contractural arachnodactyly to the fibrillin genes on chromosomes 15 and 5. The international Marfan syndrome collaborative study. N Engl J Med 1992;326: 905–9.

    Google Scholar 

  11. Jondeau G, Boutouyrie P, Lacolley P, Laloux B, Dubourg O, Bourdarias JP, et al. Central pulse pressure is a major determinant of ascending aorta dilatation in Marfan syndrome. Circulation 1999;99:2677–81.

    Google Scholar 

  12. Marque V, Kieffer P, Gayraud B, Lartaud-Idjouadiene I, Ramirez F, Atkinson J. Aortic wall mechanics and composition in a transgenic mouse model of Marfan syndrome. Arterioscler Thromb Vasc Biol 2001;21:1184–9.

    Google Scholar 

  13. Bunton TE, Biery NJ, Myers L, Gayraud B, Ramirez F, Dietz HC. Phenotypic alteration of vascular smooth muscle cells precedes elastolysis in a mouse model of Marfan syndrome. Circ Res 2001;88:37–43.

    Google Scholar 

  14. Lacolley P, Challande P, Boumaza S, Cohuet G, Laurent S, Boutouyrie P, et al. Mechanical properties and structure of carotid arteries in mice lacking desmin. Cardiovasc Res 2001;51: 178–87.

    Google Scholar 

  15. Morris CA, Demsey CA, Leonard CO, Dilts C, Blackburn BL. Natural history of Williams syndrome: physical characteristics. J Pediatr 1988;113:318–26.

    Google Scholar 

  16. Brooke BS, Karnik SK, Li DY. Extracellular matrix in vascular morphogenesis and disease: structure versus signal. Trends Cell Biol 2003;13:51–6.

    Google Scholar 

  17. Lacolley P, Boutouyrie P, Glukhova M, Daniel Lamaziere JM, Plouin PF, Bruneval P, et al. Disruption of the elastin gene in adult Williams syndrome is accompanied by a paradoxical reduction in arterial stiffness. Clin Sci (Lond) 2002;103:21–9.

    Google Scholar 

  18. Beighton P, De Paepe A, Steinmann B, Tsipouras P, Wenstrup RJ. Ehlers–Danlos syndromes: revised nosology, Vil-lefranche, 1997. Ehlers–Danlos national foundation (USA) and Ehlers–Danlos support group (UK). Am J Med Genet 1998;77:31–7.

    Google Scholar 

  19. Boutouyrie P, Germain DP, Fiessinger JN, Laloux B, Perdu J, Laurent S. Increased carotid wall stress in vascular Ehlers–Danlos syndrome. Circulation 2004;109:1530–5.

    Google Scholar 

  20. Lohler J, Timpl R, Jaenisch R. Embyronic lethal mutation in mouse collagen I gene causes rupture of blood vessels and is associated with erythropoietic and mesenchymal cell death. Cell 1984;38:597–607.

    Google Scholar 

  21. Zhu L, Vranckx R, Khau Van vien P, Lalande A, Boisset N, Mathieu F, et al. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet 2006;38:343–9.

    Google Scholar 

  22. Laurent S, Boutouyrie P, Lacolley P. Structural and genetic bases of arterial stiffness. Hypertension 2005;45:1050–5.

    Google Scholar 

  23. Laurent S, Hayoz D, Trazzi S, Boutouyrie P, Waeber B, Omboni S, et al. Isobaric compliance of the radial artery is increased in patients with essential hypertension. J Hypertens 1993;11:89–98.

    Google Scholar 

  24. Hayoz D, Rutschmann B, Perret F, Niederberger M, Tardy Y, Mooser V, et al. Conduit artery compliance and distensibility are not necessarily reduced in hypertension. Hypertension 1992;20:1–6.

    Google Scholar 

  25. Bezie Y, Lamaziere JM, Laurent S, Challande P, Cunha RS, Bonnet J, et al. Fibronectin expression and aortic wall elastic modulus in spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol 1998;18:1027–34.

    Google Scholar 

  26. Boumaza S, Arribas SM, Osborne-Pellegrin M, McGrath JC, Laurent S, Lacolley P, et al. Fenestrations of the carotid internal elastic lamina and structural adaptation in stroke-prone spontaneously hypertensive rats. Hypertension 2001;37: 1101–17.

    Google Scholar 

  27. Bézie Y, Lacolley P, Laurent S, Gabella G. Connection of smooth muscle cells to elastic lamellae in aorta of spontaneously hypertensive rats. Hypertension 1998;32:166–9.

    Google Scholar 

  28. Wolinsky H, Glagov S. A lamellar unit of aortic medial structure and function in mammals. Circ Res 1967;20:99–111.

    Google Scholar 

  29. Durier S, Fassot C, Laurent S, Boutouyrie P, Couetil JP, Fine E, et al. Physiological genomics of human arteries: quantitative relationship between gene expression and arterial stiffness. Circulation 2003;108:1845–51.

    Google Scholar 

  30. Hwang DM, Dempsey AA, Wang RX, Rezvani M, Barrans JD, Dai KS, et al. A genome-based resource for molecular cardiovascular medicine: toward a compendium of cardiovascular genes. Circulation 1997;96:4146–203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Laurent.

Rights and permissions

This is an open access article distributed under the CC BY-NC license. https://doi.org/creativecommons.org/licenses/by/4.0/

Reprints and permissions

About this article

Cite this article

Laurent, S., Fassot, C., Lacolley, P. et al. Molecular determinants of arterial stiffness. Artery Res 1, 26–31 (2007). https://doi.org/10.1016/j.artres.2007.03.004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.artres.2007.03.004

Keywords