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A Review of Vascular Traits and Assessment 
Techniques, and Their Heritability
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Abstract 

Various tools are available to assess atherosclerosis, arterial stiffening, and endothelial function. They offer utility in the 
assessment of hypertensive phenotypes, in cardiovascular risk prediction, and as surrogate endpoints in clinical trials. We 
explore the relative influence of participant genetics, with reference to large-scale genomic studies, population-based 
cohorts, and candidate gene studies. We find heritability estimates highest for carotid intima-media thickness (CIMT 
35–65%), followed by pulse wave velocity as a measure of arterial stiffness (26–43%), and flow mediated dilatation as a 
surrogate for endothelial function (14–39%); data were lacking for peripheral artery tonometry. We furthermore examine 
genes and polymorphisms relevant to each technique. We conclude that CIMT and pulse wave velocity dominate the 
existing evidence base, with fewer published genomic linkages for measures of endothelial function. We finally make 
recommendations regarding planning and reporting of data relating to vascular assessment techniques, particularly 
when genomic data are also available, to facilitate integration of these tools into cardiovascular disease research.
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1  Introduction
Hypertension is a major risk factor for Cardiovascular Dis-
ease (CVD); in turn CVD is the underlying cause of more 
than a quarter of deaths in the UK [1]. There are no vali-
dated tests that can identify early in the disease process 
which individuals will develop hypertension-mediated 
organ damage. Dysfunctional vascular traits represent key 
pathophysiological processes in the development of hyper-
tension and cardiovascular disease, with both inherited 
and reversible elements. These traits include stiffness of 
the large arteries, microvascular abnormalities, endothelial 
dysfunction, and atherosclerosis, phenotypes often appar-
ent prior to established hypertension or organ damage. 
Hence the interest in measuring vascular function, and 
in understanding the relationship between measurement 

techniques and hypertensive phenotypes, including the 
relative influence of participant sex and genetics. We 
explore this topic with reference to large scale genomic 
studies, population-based cohorts, and candidate gene 
studies.

1.1 � Definitions for the Non‑expert
Genome: complete set of genes in an organism includ-
ing introns (non-coding sequences) and exons (coding 
sequences).

Genome-wide association study: entire genome surveyed 
for genetic variants occurring more frequently in cases 
than in controls.

Candidate gene study: specify fewer variants of interest 
a priori, and aim to establish if a disease association can be 
confirmed.
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Epigenetics: genetic modification without mutations 
of the DNA sequence; occur in normal development or 
induced by environmental factors.

Exome: complete set of exons present in an organism 
which accounts for all the coding regions of genes present.

SNP: single nucleotide polymorphism—DNA sequence 
variations with a single nucleotide (adenine, thymine, 
cytosine, or guanine) in the genome sequence altered.

Common variants: SNPs with minor allele frequency 
(MAF) of greater than 1%, accounting for over 90% of 
genetic variation between individuals.

Mendelian Randomization: method of using measured 
variation in genes of known function to examine the causal 
effect of a modifiable exposure on disease.

2 � Assessment of Vascular Function and Disease
Cardiovascular outcome measures in clinical trials gener-
ally relate to coded events such as myocardial infarction or 
death; alternatively, research trials may employ surrogate 
markers such as vascular stiffness and endothelial dys-
function—early functional traits known to be predictors 
of more advanced structural changes and development of 
cardiovascular disease. Assessment techniques quantify-
ing such traits reflect different aspects of vascular health, 
assessed in the European Society of Cardiology Working 
group position paper [2]. First, carotid ultrasound to meas-
ure intima-media thickness (CIMT) has clinical utility in 
diagnosing carotid atherosclerotic vascular disease [3]–[5], 
but is also linearly associated with blood pressure (BP) [6] 
and adds prognostic value in the prediction of cardiovascu-
lar events and mortality, see Sect. 3.1 [7, 8]. Second, pulse 
wave analysis (PWA), PWA-derived augmentation index 
(AIx), and carotid-femoral pulse wave velocity (cfPWV) 
assess for arterial stiffness, a process characterised by func-
tional changes and structural remodelling within the arte-
rial wall, with associated fibrosis and calcification. These 
measures of arterial stiffening are independent and reli-
able predictors of hypertension, myocardial infarction and 
stroke [9]–[11], with meta-analyses of individual patient 
data showing the alternative brachial-ankle PWV method 
also associated with cardiovascular complications [12], 
and stiffening of the carotid artery with incident stroke 
[13]. The predictive strength of arterial stiffness is, how-
ever, greater in subjects with an established cardiovascular 
risk [14]. Finally, endothelial function refers to its’ ability 
to detect physical (shear stress) and biochemical signals, 
and respond through expression of surface molecules and 
production of vasoactive and inflammatory mediators. 
Endothelial dysfunction precedes structural micro-circu-
latory changes. Hypertension can be both cause and con-
sequence of microcirculatory dysfunction, closely tied to 
peripheral vascular resistance, with vascular tone in turn 

regulated by many systems (sympathetic nervous system, 
endocrine, and local autoregulation), each with polygenic 
influences [15]. Endothelial function can be assessed using 
ultrasound of the brachial artery with ‘flow-mediated dila-
tion’ (FMD), dilation predominantly mediated by nitric 
oxide release from endothelial cells. Alternatively, periph-
eral arterial tonometry (PAT), commonly quantified by 
the Endo-PAT2000 device (Itamar Medical) also assesses 
microcirculatory and endothelial function by measuring 
arterial tone or ‘hyperaemic response’ in the fingertips in 
response to proximal occlusion. EndoPAT-2000 device 
also generates an augmentation index adjusted to a heart 
rate of 75  bpm (AI@75), similar to PWA but derived 
from peripheral vessels. Hence, these techniques not only 
reflect different aspects of the pathophysiology of hyper-
tension and cardiovascular disease but may aid identifica-
tion of different hypertensive phenotypes [16]–[18]. They 
are also well accepted as being influenced by age, BP, and 
sex; factors that should be accounted for when comparing 
techniques. Less well defined are the effects of underlying 
genetic differences, i.e. the inherited component, or ‘herit-
ability’ of data pertaining to techniques measuring vascu-
lar health. Genotypic effects on these vascular assessment 
tools are myriad, but key checkpoints where influence may 
be hypothesised include vascular endothelial cell sensitiv-
ity to extracellular stimuli, intra-cellular signalling cas-
cades, and effects on transcription, ultimately influencing 
production of vasoactive substances, vascular tone, and 
remodelling.

3 � Genetics of Hypertension
Familial and twin studies estimate that the heritable com-
ponent of BP lies between 22 and 65% [19]–[22]. BP is a 
complex trait with no single gene playing a dominant role; 
instead multiple genes demonstrate minor additive effects. 
These genes encode for a variety of proteins, ion channels, 
receptors, and enzymes involved in endocrine, cardiac, 
renal, vascular and neural systems that influence BP regu-
lation. This complexity is illustrated by the heterogeneity 
of underlying pathology in the (rare) monogenic cases of 
secondary hypertension, examples of which are discussed 
in Sect. 2.1.1. Other genes are identified only by genome 
wide association studies (GWAS); an illustrative example 
follows in Sect. 2.1.2.

3.1 � Single Gene Disorders
Monogenic causes of hypertension are rare and mecha-
nisms varied. For example, children with homocystinuria 
and familial hypercholesterolaemia develop premature 
atherosclerosis and early endothelial dysfunction [23]; in 
AD glucocorticoid-remediable aldosteronism, chimeric 
genes encoding steroid 11ß-hydroxylase (CYP11B1) and 
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aldosterone synthase (CYP11B2) lead to aldosterone reg-
ulation by ACTH rather than angiotensin II [24, 25], salt 
and water retention, and elevation in BP [26]. Finally, AD 
hypertension with brachydactyly syndrome results from a 
gain of function mutation in PDE3A, encoding phospho-
diesterase 3A and resulting in cerebral vascular anomalies 
and baroreceptors hypersensitivity [27]. For an in-depth 
review of monogenic hypertensive syndromes, we would 
highlight Burrello et al. [28].

3.2 � GWAS
GWAS have identified multitudes of genetic loci associ-
ated with BP, covered in-depth elsewhere [29]. For exam-
ple ATP2B1 encoding PMCA1, a plasma membrane 
ATPase expressed in vascular endothelium and involved 
in calcium pumping from the cytosol to the extracellu-
lar compartment. GWAS can, however, be susceptible to 
false positive associations if statistical analysis lacks rigour, 
if the panel fails to reflect genomic variation, or the study 
lacks statistical power; points to remain cognizant of.

3.3 � Epigenetics
Processes of epigenetic modification include methylation, 
post-translational histone modification, and small non-
coding RNAs. HSD11B2 gene promoter methylation for 
example has been associated with hypertension onset [30, 
31]; acetylation meanwhile promotes gene transcription of 
NOS3 (eNOS) and other genes affecting vascular tone and 
salt and water homeostasis [32, 33]. Finally, small non-cod-
ing RNAs (miRNA) may conversely downregulate genes 
by binding the corresponding mRNA resulting in repres-
sion of translation [33]. Population-based studies further 
support the role of epigenetics in hypertension [34].

3.4 � Sex and BP Genetics
The male–female difference in BP, vascular traits, and 
CVD is complex. Mediating factors include X and Y chro-
mosome differences, sex-hormone influences, renin–
angiotensin–aldosterone system divergence [35], societal 
and behavioral impacts, and even epigenetic differences, 
with females receiving genetic imprints from each parent’s 
X chromosome, random X inactivation leading to fur-
ther genetic heterogeneity. Gene-by-sex interactions, and 
age (menopause)-dependent effects further complicate 
interpretation.

3.5 � Summary
Bringing together the evidence of different phenotypes of 
hypertension [16–18, 36, 37], determined by pathophysi-
ology but characterised by the aforementioned vascular 
traits; and considering the exponentially increasing data 
regarding hypertension risk alleles; it becomes impor-
tant to explore the genotypic and sex associations with 

vascular techniques used to measure these hypertensive 
phenotypes.

4 � Carotid Intima‑Media Thickness
4.1 � Heritability
A number of studies have reported heritability estimates 
for CIMT, though with disparate estimates (21 to 65%) 
despite similar adjustment for covariates, see Fig.  1 and 
Table 1 [38, 39]. Sacco et al. for example report 65% her-
itability in 100 Dominican families (1390 individuals, 61% 
female, mean age 46 years) after adjustment for age, sex, 
smoking, and BMI [39]; Cecelja et al. estimate age-adjusted 
heritability at 49% (95% CI 17–63%) in 762 females of the 
Twins UK cohort with mean age 58 ± 9 years [40]; whilst 
only 35% heritability is reported by Sayed-Tabatabaei et al. 
[41] in their assessment of 930 individuals connected in a 
single pedigree from an isolated population (participants 
of the Erasmus Rucphen Family study).

4.2 � Genes
GWAS identifies numerous genetic loci as having possible 
significance, and studies of candidate genes approximat-
ing to these loci have also been widely reported (Table 2); 
16 of the 32 identified (50%) also have evidence of asso-
ciation with BP traits. Figure  2 demonstrates that many 
genes have a role vascular remodelling, such as MMP9 
[42] encoding a gelatinase targeting type IV collagen and 
gelatin; CXCL12 involved in endothelial and epithelial cell 
proliferation and migration [43]; and VCAN [44] which 
encodes chondroitin sulfate proteoglycans (extracellular 
matrix components), thus regulates cell proliferation, dif-
ferentiation, and survival [45].

4.3 � Interactions
Other genes demonstrate the importance of gene-by-envi-
ronment interactions in determining CIMT, for example 
MCPH1 encodes a damage response protein regulating 
cell cycle [44]. Similarly, gene–gene interactions are appar-
ent, for example genes involved in cholesterol biology and 
inflammation where high-density lipoprotein composition 
is altered in an inflammatory state, with apolipoprotein-
A-I and –A-II displaced by Serum amyloid A (SAA). SAA 
SNPs rs2468844 and rs12218 alter binding affinity of SAA 
proteins [46, 47], with implications for reverse cholesterol 
transport, CIMT, plaque formation [48], and plaque stabil-
ity [49].

5 � Vascular Stiffness: Pulse Wave Analysis and Pulse 
Wave Velocity

5.1 � Heritability
Genes are estimated to account from 26 to 43% of the 
variability in vascular stiffness as measured by PWV (see 
Table  1, Fig.  1), with data derived from both population 
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and twin studies [40, 41, 52, 53]. For example, the Georgia 
Cardiovascular Twin Study of 388 twins (41% black; 49% 
male) aged 12–30  years; report 53% (42–62%) heritabil-
ity for dorsalis pedis (foot) PWV [53], with no sex or race 
differences; additionally, the aforementioned Twins UK 
cohort of 762 females, mean age 58 ± 9 report heritability 
estimate of 38% (95% CI 16–63%) after adjustment, with 
annual progression interestingly demonstrating higher 
adjusted heritability estimates of 55% (31–64%) over 
5 years follow-up [40].

5.2 � Genes
Many studies of the genetics of arterial stiffness focus on 
parameters other than PWV, such as pulse pressure and 
forward and reflected wave amplitude, covered in detail 
elsewhere [142, 143]. Looking specifically at PWV as the 
most commonly used technique, GWAS of 644 individu-
als involved in the Framingham Heart Study did not find 
any variants achieving genome wide significance in the 
primary analysis [91], despite the Mitchell et  al.study of 
2127 participants (mean age of 60 years, 57% female) also 
derived from the Framingham cohort reporting moderate 
heritability for PWV (h2 = 0.40), with suggestive linkage 
regions in chromosomes 2, 7, 13, and 15 [52]. Informed by 
GWAS, and based on UK Biobank data, Zekavat et al. [85] 
generated a six variant polygenic arterial stiffness score, 
showing a relationship with SBP and DBP, and Mendelian 

randomization data supporting causality, with genetic 
predisposition of arterial stiffness preceding hypertension 
[85].

5.3 � Interactions
Fifteen of the 24 genes (62.5%) implicated in arterial stiff-
ness have evidence of BP associations, see Table 2. Many 
candidate gene polymorphisms studied in greater detail 
relate to the renin angiotensin aldosterone system; in par-
ticular angiotensin-converting enzyme (ACE) gene poly-
morphisms are known to influence vascular tone, fibrosis, 
and ultimately arterial stiffness, though with discordant 
results between healthy, diabetic, and hypertensive popu-
lations, despite adjustments for demographic and lifestyle 
factors [104, 106, 142], suggesting either an additional 
interaction or confounding factor is involved. Similarly, 
the A1166C polymorphism of angiotensin II type 1 recep-
tor gene (AGTR1) was associated with arterial stiffness 
in hypertensive participants [103, 108], but not among 
normotensive participants of the same study, nor the Rot-
terdam Study population [103, 110]. Study participant 
age needs to be considered in such publications as com-
bined effects may be apparent, e.g. C allele carriers show-
ing increased PWV, but only beyond 55 years of age [103], 
though the Rotterdam study population was over 55 years 
of age but still did not support the association. Addition-
ally, heterogeneous methods of estimating arterial stiffness 
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limit comparisons of studies. Mayer et al. for example find 
AGTR1 polymorphism significant in femoral-popliteal 
PWV but not carotid-femoral [108]; Levy et al. conversely 
report greater heritability estimates for carotid-femoral 

than for carotid-brachial PWV, consistent with Salvi et al. 
reporting carotid-femoral techniques are more reliable 
[91, 144]. This emphasises the need for standardized tech-
nique, with the consensus now favouring carotid-femoral 

Table 1  Evidence regarding heritability of techniques assessing vascular function

CIMT carotid intima-media thickness, FMD flow-mediated dilatation, PWA pulse-wave analysis, PWV pulse-wave velocity, PAT peripheral arterial tone, BP blood 
pressure, MZ monozygous, DZ dizygous, N/A not applicable (no evidence of BP association)

CIMT Heritability: 35–65% BP considerations of study

65% (95% CI 60–70%): 100 Dominican families after adjustment for age, 
sex, smoking, and BMI. Sacco 2009 [39]

40% had hypertension, which met inclusion criteria as a covariate for CIMT. 
A chromosome 14q-hypertension interaction suggested for CIMT. Sacco 
2009 [39]

49% (95% CI 17–63%) adjusted for age: 762 females (Twins UK cohort), 
mean age 58 ± 9 years; average follow up 4.9 years; heritability of annual 
progression of CIMT only 8% (95% CI 0–36%). Cecelja 2018 [40]

Progression of CIMT was negatively associated with treatment for hyperten-
sion. Cecelja 2018 [40]

35% ± 8 (after adjustment; P < 0.001): 930 individuals connected in a 
single pedigree from an isolated population (Erasmus Rucphen Family 
cohort); mean age females 51, males 54 yrs. Sayed-Tabatabaei 2005 [41]

Heritability 41% unadjusted, 35% adjusted for BP (and other factors), sug-
gesting pleiotropic genes. Sayed-Tabatabaei 2005 [41]

38% ± 6 heritability, adjusted for multiple covariates; n = 906 men, 980 
women (mean age 57 years) from 586 extended families of the Framing-
ham Offspring cohort. Fox 2003 [50]

40% of males and 36% of females had hypertension. Estimated age- and 
sex-adjusted heritability (c.f. the multivariable-adjusted) was 44% Fox 2003 
[50]

21% ± 6 after adjustment for multiple covariates; n = 950 American Indi-
ans of the Strong Heart Study (SHS); ≈30% with diabetes and hyperten-
sion; mean ages of different communities 41 to 44 years. North 2002 [38]

Hypertension did not reach significance as a covariate for CIMT. Proportion 
of variance due to covariates: 46%. North 2002 [38]

36%: 74 male twin pairs, 20 MZ, aged 42 to 69, one twin migrating to 
Sweden; IMT values also correlated between twin pairs (rMZ = 0.64, 
P = 0.002; rDZ = 0.46, P = 0.0006). Jartti 2002 [51]

IMT correlated with S (r = 0.24, P = 0.004). Jartti 2002 [51]

PWV and PWA Heritability: 26–43% BP considerations of study

26% ± 8 (after adjustment, P < 0.001) for PWV: n = 930; from an isolated 
population (Erasmus Rucphen Family); mean age females 51, males 54 yrs. 
Sayed-Tabatabaei 2005 [41]

Heritability 36% unadjusted, 26% adjusted for BP (and other factors), sug-
gesting pleiotropic genes. Sayed-Tabatabaei 2005 [41]

40% ± 9 among 1480 participants representing 817 pedigrees in the 
Framingham Study offspring cohort. Mean age 60 ± 10 years. Variance 
components linkage analysis identified chromosomes 2, 7, 13, and 15 for 
PWV. Mitchell 2005 [52]

Analysed PWV separately from BP, and used additional linkage sample: the 
results mapped to separate genomic locations with credible candidate 
genes, suggesting distinct genetic determinants. Mitchell 2005 [52]

38% (95% CI 16–63%) adjusted: 762 females (Twins UK cohort), mean age 
58 ± 9 years; average follow up 4.9 years; heritability of annual progression 
of PWV 55% (31–64%). Cecelja 2018 [40]

Demonstrate association between progression in PWV and longitudinal BP, 
though not directionality. Cecelja 2018 [40]

43% (95% CI 30–54%) / 53% (95% CI 42–62%) for radial / foot PWV respec-
tively. No ethnicity or gender differences in estimates. 41% black; 49% male; 
aged 12–30 (mean 17.7 ± 3.3) years; n = 388, twins: 89 pairs MZ, 105 pairs 
DZ. Ge 2007 Georgia Cardiovascular Twin Study [53]

Overlap with genes influencing DBP. Ge 2007 [53]

PAT heritability: unknown BP considerations of study

No published heritability estimates identified; though race, sex, and age influ-
ence EndoPAT results. Mulukutla 2010; Schnabel, 2011 [54, 55]

N/A

FMD heritability: 14–39% BP considerations of study

14%: n = 883, 53% women; mean age 61; adjusting for stepwise model  
covariates, estimated heritability of brachial artery baseline diameter was 
33 ± 7%, and FMD% was 14 ± 6%, with age-gender interaction (P = 0.01). 
Benjamin 2004 [56]

Concluded SBP is an important correlate of FMD; but not directionality or 
whether associated through a third factor. Benjamin 2004 [56]

24%: 74 male twin pairs, 20 MZ, aged 42–69, one twin migrat-
ing to Sweden; FMD did not correlate between twins, (rMZ = 0.23, 
P = 0.34; rDZ = 0.11, P = 0.43), suggesting modest genetic component; 
h2 = 2 × (0.23 − 0.11) = 0.24. Jartti 2002 [51]

FMD correlated with SBP: r =  − 0.21 (P = 0.01), and DBP: r =  − 0.17 
(P = 0.04). Jartti 2002 [51]

39% (95% CI 18–56%): 94 male twin pairs, mean age 55 ± 2.8 years; adjusted 
for age, cholesterol, DBP, and body mass index. Zhao 2007 [57]

Unadjusted correlation of FMD and SBP: r = − 0.05 (P = 0.15) and DBP: 
r = − 0.08 (P = 0.08), P values corrected using generalized estimating 
equation. Zhao 2007 [57]
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Fig. 2  Gene polymorphisms relating to techniques measuring vascular health, with genes grouped according to function. Based on data in Table 2
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PWV [145]. Finally, the importance of ancestry when 
extrapolating data is highlighted by the concordance of 
results derived from a common population e.g. Zekavat 
et al. and Fung et al. reporting UK BioBank data [85, 86], 
and discordant results in candidate genes and heritability 
estimates across disparate populations [52, 110].

6 � Endothelial Function: Flow Mediated Dilatation 
and Peripheral Arterial Tone

6.1 � Heritability
The influence of genetics on endothelial function as meas-
ured by FMD is supported by an Italian cohort of 40 
healthy young people (age 6–30, 19 male) with a family 
history of premature myocardial infarction, demonstrat-
ing lower FMD (5.7 ± 5.0% vs. 10.2 ± 6.6% in control sub-
jects; P = 0.001) [146]; and by a cohort of 50 British young 
people with a family history of coronary artery disease (31 
male, mean age 25 years) also suggesting endothelial dys-
function (FMD 4.9 ± 4.6% vs 8.3 ± 3.5% in control group, 
P < 0.005) [147]. Among 883 participants of the Framing-
ham cohort (53% female; mean age 61), estimated herita-
bility (accounting for covariates) of brachial artery baseline 
diameter was 0.33 ± 0.07, and FMD% was 0.14 ± 0.06; for 
FMD%, there was an age-gender interaction (P = 0.01), 
females showing steeper age-related FMD% decline [56]. 
Twin studies tend to be preferred above family studies for 
heritability estimation, as they allow a more precise sepa-
ration of environmental influences from genetic effects 
[148], including controlling for such age effects. Twin stud-
ies reporting FMD heritability estimates include a Finnish 
cohort reporting FMD heritability of 24%, derived from 74 
male twin pairs (20 monozygous), aged 42–69 years, with 
monozygous twins demonstrating improved FMD after 
migrating to Sweden (7.2 ± 4.4 vs 3.7 ± 2.9%, P = 0.003), a 
country with lower cardiovascular risk [51]. A higher esti-
mate of 39% was reported from 94 male twin pairs from 
the USA (58 monozygous pairs), mean age 55 ± 2.8 years, 
95% Caucasian [57].

6.2 � Genes
Candidate genes linked to FMD are included in Table  2, 
5 of the 8 (63%) also linked to hypertension, see Fig.  2. 
Examples include the Asp/Asp genotype of the endothe-
lial nitric oxide synthase (NOS3) Glu298 → Asp polymor-
phism, which was associated with reduced vascular nitric 
oxide (NO) generation (a potent vasodilator), decreased 
brachial artery FMD, and increased CIMT in a group of 
young healthy individuals free of traditional cardiovascular 
risk factors [75, 149]. NOS3 regulation involves receptor-
mediated mechanisms (e.g. acetylcholine, bradykinin, and 
substance P) and mechanical stimuli (shear stress). How-
ever, NOS3 Asp298 is not unique; more than 100 poly-
morphisms in NOS3 have been identified [150], with small 

effect size and significant interaction with other genes and 
environmental factors [151]. Further elements of the NO 
system implicated include PDE3A, a phosphodiesterase 
with a role in the NO/cGMP pathway.

Other genes have more obscure associations, such as 
PHACTR1 with a role in actin re-organisation but also 
possibly regulating vasoconstriction via endothelin-1 gene 
expression [94]; NFKB1 encoding a protein with diverse 
roles as a transcription regulator [152], and CYBA encod-
ing p22phox, a component of NADPH oxidase involved in 
vascular ROS generation [134, 135], see Table 2. Yoshino 
et  al. studying the genetics of endothelial dysfunction 
report coronary vascular responses to Acetylcholine, find-
ing 1563 SNPs connected with cardiovascular physiology 
and pathology [122]. Variants in adenosine A1 receptor 
(ADORA 1) were associated with endothelial dysfunction 
in the entire cohort, while variants in adenosine A3 recep-
tor (ADORA 3) and lipoprotein A (LPA) had the strongest 
associations with increased risk of endothelial dysfunction 
in women, again highlighting that sex differences must be 
considered within this area of research.

We did not find published heritability estimates regard-
ing the EndoPAT assessment tool of peripheral arterial 
tone, though both race and sex are known to influence 
results [54, 55]. Numerous candidate genes have been pro-
posed to influence vascular endothelial function, but only 
six of them reported have specifically been linked to PAT, 
five of the six (83 percent) had commonality with BP traits. 
see Fig.  2. The six linked to PAT include NOS3, already 
discussed in regard to FMD [117]; APO E, ACE [118], and 
Sphk1 SNPs/alleles [120]. Siedlinski [120] elegantly com-
bine Sphk1 identification through murine transcriptome 
analysis with in  vivo experiments confirming a role in 
vasoconstriction and endothelial dysfunction, and correla-
tion of human sphingosine-1-phosphate (S1P) serum lev-
els with arterial tonometry.

7 � Heritability Study Considerations
BP regulation and vascular function are complex, poly-
genic traits, additionally influenced by many environ-
mental factors. Molecular genetic analysis is therefore 
challenging due to the sheer number of relevant genes and 
their polymorphic effects, as examples in Table 2 illustrate. 
There are also certain limitations associated with heritabil-
ity studies, as follows.

7.1 � Family Studies
Classical family study design can overlook non-additive 
genetic effects and shared environmental factors. Addi-
tionally, the underlying assumption regarding the genetic 
relationship is flawed; offspring tend to inherit long seg-
ments of DNA resulting in deviations from the expected 
50% DNA inheritance from each parent. Furthermore, 
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family studies often recruit based on participant phe-
notype, with family members then invited to partici-
pate. However, techniques to correct for ascertainment 
bias should be employed, such as Hopper and Mathews 
method which adjusts the heritability estimate based on 
the mean and total variance of the genetic and environ-
mental components for each individual family grouping 
[153].

7.2 � Missing Heritability
Another issue is ‘missing heritability’, i.e., the disparity 
between heritability estimates derived from genotype data 
(explaining a low proportion of the variance), and from 
twin studies (estimating significantly higher heritability). 
Missing heritability is likely a consequence of restriction 
of many genetic association studies to SNPs—missing 
rare mutations. Gene-by-gene interactions, epigenetics, 
and gene-by-environment interactions also contribute 
to missing heritability, through assumptions that such 
interactions are minimal, identifiable, and that variance 
explained by shared environmental factors is identical in 
pairs. Such assumptions risk inflating heritability estimates 
by attributing the contribution of environmental factors to 
genetics.

7.3 � Directionality
Directionality is an inherent challenge when assessing 
genotypic influences effecting vascular traits: differentiat-
ing if an identified gene has a direct impact on e.g., PWV, 
or alternatively elevates BP which in turn leads to arterial 
remodeling, stiffness, and results in elevated PWV. The 
high proportion of identified genetic loci and candidate 
genes common to both vascular phenotypes and hyperten-
sion outlined in Table 2 and Fig. 2 highlights this.

7.4 � Design
Most data are cross-sectional in nature, from which 
change over time in vascular function or BP cannot be 
inferred. One might also hypothesize that SNPs contribut-
ing to vascular ageing for example may influence PWV at 
60 years of age, but not at 30. Studies that do report her-
itability of baseline measures and progression, have found 
discrepancies [40]; therefore, duration of follow up, or 
population age of cross-sectional data must be reported in 
detail. Future studies independently confirming heritabil-
ity of vascular traits and candidate genes, as well as their 
independence from each other and from BP are required, 
and will determine the utility of vascular assessment tech-
niques as surrogate endpoints in trials, separate from their 
use as predictive risk tools.

8 � Vascular phenotype
Various genes in Table  2 appear numerous times sug-
gesting effects on multiple vascular function assessment 
techniques. For example ACE, which cleaves angiotensin 
I into angiotensin II with vasoconstrictive effects; ACE 
also stimulates the production of aldosterone, increas-
ing absorption of salt and water in the kidneys; ACE fur-
thermore causes inactivation of the vasoactive mediator 
bradykinin. It is therefore not surprising that genetic poly-
morphisms of ACE impact on many of the vascular assess-
ment techniques described. Similarly, NOS3 (endothelial 
nitric oxide synthase) has been identified as relevant in 
multiple assessment tools of vascular function, with local 
vasodilatory regulation of vascular tone and diameter (see 
Table  2). Other genes or polymorphisms appear specific 
to the technique or vascular trait, such as SAA1 in CIMT, 
COL4A in arterial stiffness (PWV), and CYBA encod-
ing p22phox, a component of NADPH oxidase in FMD. 
Some furthermore show a gene by sex interaction, such 
as VCAN locus in females, encoding a chondroitin sul-
fate proteoglycan of the adventitia and intima in CIMT 
[44], and NOS3 rs1799983 relating to central pulse pres-
sure and forward wave amplitude parameters again only 
in females [98]. Others appear to only reach significance in 
those with hypertension, suggesting gene by gene or gene 
by environment interactions e.g. CYBA T allele associated 
with higher FMD only in hypertensive individuals [154]. 
These highlight the importance of comprehensive demo-
graphic reporting and consideration of such factors when 
comparing data from multiple sources. Finally, fewer stud-
ies were identified reporting the genetics of measures of 
endothelial function (FMD and PAT) compared to those 
relating to vascular stiffness and remodeling/atherosclero-
sis; we would propose this as an area for future study. Of 
note, no single gene or SNP discussed here demonstrates a 
substantial association with the vascular traits and assess-
ment techniques covered. This is to be expected in poly-
genic traits, but may also reflect features of study design 
identified above: necessity for standardised technique with 
these tools, underpowering and lack of external validation 
cohorts among many studies, gene–gene or gene– envi-
ronment interactions. Comparisons between different 
demographic groups are also complicated if age, sex, race, 
and BP are not fully adjusted for. Researchers should be 
cognizant of these in future studies.

9 � Sex‑Differences
Gene-by-sex interaction may not always be captured by 
GWAS. Efforts to elucidate sex-specific genomic deter-
minants of BP demonstrated in 120 Canadian families 
found that one quarter of the 539 hemodynamic, anthro-
pometric, metabolic, and humoral traits studied were 



75 Craig et al. Artery Research (2022) 28:61–78	

both age and sex dependent, and one eighth were exclu-
sively age or sex dependent [155].

A vascular phenotypic divide related to participant 
sex may also exist, demonstrating greater discrimina-
tion between normotensive and hypertensive PWV and 
augmentation index for females than males [16] and sup-
ported by our own unit’s experience (unpublished). Con-
versely, a collaboration establishing reference values for 
PWV describe apparent sex differences being almost fully 
accounted for by age and BP differences [156]. Two points 
therefore to consider if undertaking or analysing vascular 
function data, is whether the groups were well matched or 
adjustments for age and BP applied, and we  suggest that 
researchers should also report outcome data stratified by 
sex to facilitate interpretation.

10 � Conclusion
In conclusion, CIMT, PWV/PWA, FMD and PAT offer 
utility as surrogate markers of atherosclerosis, arterial 
stiffening, endothelial and microcirculatory function i.e. 
vascular function, and are predictive of cardiovascular 
risk. They may also have an increasing role as surrogate 
endpoints in genomic studies and clinical trials [157], 
however sex differences remain contentious, and dissect-
ing genetic associations independent from hypertension is 
challenging. The genetics underlying these vascular assess-
ment techniques have been variably studied, CIMT more 
so than PAT. The genetics of hypertension has a broad lit-
erature base; the next step is to integrate characterization 
of vascular and hypertensive phenotypes with genotypes 
as a natural symbiosis in studying the pathophysiology of 
hypertension and cardiovascular disease, and to better 
personalize cardiovascular medicine.
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