

Conference Abstract

P.63 Sarcopenia and Atherosclerotic Occlusive Disease: How Much We Know and What We Need to Know About this Association?

Joana Ferreira^{1,2,3,*}, Alexandre Carneiro⁴, Pedro Cunha^{2,3,5,6}, Armando Mansilha^{7,8}, Isabel Vila^{2,3,5,6}, Cristina Cunha^{2,3,5,6}, Cristina Silva^{2,3,5,6}, Adhemar Longatto-Filho^{2,6,9,10,11}, Maria Correia-Neves^{2,9}, Gustavo Soutinho¹², Luís Meira-Machado¹³, Amilcar Mesquita¹, Jorge Cotter^{2,3,5,6}

¹Vascular Surgery Department- Hospital da Senhora da Oliveira

²Life and Health Science Research Institute (ICVS), School of Medicine, University of Minho

³ICVS/3B's-PT Government Associate Laboratory

⁴Radiology Department- ULSAM

⁵Medicine Department- Hospital da Senhora da Oliveira

⁶Center for the Research and Treatment of Arterial Hypertension and Cardiovascular Risk, Internal Medicine Department- Hospital da Senhora da Oliveira

⁷Faculdade de Medicina da Universidade do Porto

⁸Vascular Surgery Department Hospital de São João

°ICVS/3B's-PT Government Associate Laboratory

¹⁰Department of Pathology (LIM-14), University of São Paulo School of Medicine

¹¹Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos

¹²Institute of Public Health of the University of Porto (ISPUP)-University of Porto

¹³Centre of Molecular and Environmental Biology & Department of Mathematics-University of Minho

Keywords

Sarcopenia strength atherosclerosis

ABSTRACT

Purpose/Background: Sarcopenia (decrease of muscle mass and function) has been linked with atherosclerosis [1]. The EWGSOP2 updated consensus, uses low muscle strength as the primary indicator of sarcopenia [2]. It is acknowledged that strength is better than mass for predicting adverse outcomes [2]. Handgrip strength (HGS) is a simple assessment to estimate overall muscular strength [3]. and is associated with cardiovascular mortality [4].

Objective: Analyze the relationship between HGS and atherosclerotic disease (carotid artery disease + lower extremity artery disease).

Methods: Prospective observation study was conducted from January to December 2019. The clinical and demographic data was recorded. Isometric HGS was measured with an adjustable handheld dynamometer (Jamar The higher value of each arm was used to classify the patient as sarcopenic or non-sarcopenic. Definition of sarcopenia: HGS <30 kgf in men and <20 kgf in women [5].

Results: 94 patients (aged 44–86 years) were analyzed: 64 sarcopenic and 30 non sarcopenic. Groups differed in the prevalence of diabetes and smoking status (Table 1). No differences were found in the carotid parameters analyzed (Table 1). There was, a difference in the prevalence of chronic limb-threatening ischemia (CLTI) in sarcopenic versus non-sarcopenic group (23.44% *versus* 6.67% p = 0.046). Importantly, binary logistic regression showed that diabetes (p = 0.014), and HGS (p = 0.027) have a significant effect on CLTI (Table 2).

Conclusions: No relationship was found between sarcopenia (measured by HGS) and carotid atherosclerosis, differing from other authors [1,6]. In this study, sarcopenic had a higher incident of diabetes and CLTI. Sarcopenia and diabetes are reciprocally related and may share a similar pathogenetic pathway [7,8,9].

	Sarcopenia (<i>n</i> = 64)	No Sarcopenia (<i>n</i> = 30)	p
Age (years)	69.81 ± 8.79	62.6 ± 8.61	p = 0.889
Male	47 (73.44%)	27 (90.00%)	p = 0.067
Hypertension	51 (79.69%)	21 (70.00%)	p = 0.301
Dyslipidemia	47 (73.43%)	18 (60.00%)	p = 0.189
Smoking load (UMA)	24.42 ± 33.14	37.76 ± 31.8	p = 0.748
Smoker/Ex-smoker	33 (51.56%)	24 (80.00%)	$p = 0.013^*$
Diabetes	28 (43.75%)	7 (23.33%)	$p = 0.049^*$
Coronary disease	11 (17.19%)	4 (13.33%)	p = 0.613
History of stroke	11 (17.19%)	3 (10.00%)	p = 0.347
Total cholesterol (mg/dL)	158.16 ± 39.82	159.6 ± 30.72	p = 0.22
LEAD	43 (67.19%)	17 (56.67%)	p = 0.275
Claudicants	28 (43.75%)	15 (50.00%)	p = 0.615
CLTI	15 (23.44%)	2 (6.67%)	$p = 0.046^*$
ABI right	0.83 ± 0.24	0.78 ± 0.29	p = 0.287
ABI left	0.81 ± 0.28	0.77 ± 0.23	p = 0.671
Right carotid artery stenosis			•
50-70	4 (6.25%)	2 (6.67%)	p = 0.952
>70%	58 (90.63%)	27 (90.00%)	p = 0.702
Light carotid artery stenosis			
50-70	3 (4.79%)	1 (3.33%)	p = 0.787
>70%	4 (6.25%)	2 (6.67%)	<i>p</i> = 0.903
Area right carotid plaque (mm ²)	21.22 ± 19.81	20.01 ± 17.04	p = 0.622
Average IMT- right (mm)	0.96 ± 0.41	0.88 ± 0.24	p = 0.159
Area left carotid plaque (mm ²)	21.46 ± 18.73	21.47 ± 22.06	<i>p</i> = 0.948
Average IMT- left (mm)	0.93 ± 0.25	0.88 ± 0.29	p = 0.861

Table 1

Table 2

Independent variables	Categories	β	95% CI	p
CLTI	Diabetes Higher HGS	$\begin{array}{c} 1.488 \\ -0.888 \end{array}$	1.34-14.60 0.846-0.990	0.014 0.027

REFERENCES

- Uchida S, Kamiya K, Hamazaki N, Matsuzawa R, Nozaki K, Ichikawa T, Suzuki Y, et al. Association between sarcopenia and atherosclerosis in elderly patients with ischemic heart disease. Heart Vessels 2020;35:769–75.
- [2] Maliszewska K, Adamska-Patruno E, Krętowski A. The interplay between muscle mass decline, obesity, and type 2 diabetes. Pol. Arch. Intern. Med. 2019;129:809–16.
- [3] den Ouden MEM, Schuurmans MJ, Arts IEMA, Grobbee DE, Bots ML, van den Beld AW, et al. Atherosclerosis and physical functioning in older men, a longitudinal study. J. Nutr. Health. Aging. 2013;17:97–104.
- [4] Lee MR, Jung SM, Kim HS, Kim YB. Association of muscle strength with cardiovascular risk in Korean adults: findings from the Korea National Health and Nutrition Examination Survey (KNHANES) VI to VII (2014-2016). Medicine (Baltimore) 2018;97:e13240.
- [5] Lai S, Muscaritoli M, Andreozzi P, Sgreccia A, De Leo S, Mazzaferro S, et al. Sarcopenia and cardiovascular risk indices in patients with chronic kidney disease on conservative and replacement therapy. Nutrition 2019;62:108–14.
- [6] Shimizu Y, Sato S, Koyamatsu J, Yamanashi H, Nagayoshi M, Kadota K, et al. Handgrip strength and subclinical carotid atherosclerosis in relation to platelet levels among hypertensive elderly Japanese. Oncotarget. 2017;8:69362–9.
- [7] Wicks SM, Salamon I, Calderon AI, Esperanza J. de Blanco C, Mahady GB. Chapter 23 Sarcopenia, Diabetes, and Nutritional Intervention. In: Bagchi D, Nair S, editors. Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome (Second Edition). Academic Press; 2018, pp. 279–292.
- [8] Mesinovic J, Scott D. Sarcopenia and diabetes mellitus: evidence for a bi-directional relationship. Eur. Geriatr. Med. 2019;10:677–680.
- [9] Sinclair AJ, Abdelhafiz AH, Rodríguez-Mañas L. Frailty and sarcopenia newly emerging and high impact complications of diabetes. J Diabetes Complications. 2017;31:1465–73.

© 2020 Association for Research into Arterial Structure and Physiology. Publishing services by Atlantis Press International B.V. This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).