P.50 Radial Artery Phenotyping in Fibromuscular Dysplasia Through Ultra-High Frequency Ultrasound: A Radiomic Approach

Federica Poli1, Rosa Maria Bruno1,2,*, Francesco Faita3, Hakim Khettab2, Michel Azizi4, Saverio Vitali5, Mirco Cosottini1,5, Davide Caramella1,5, Lorenzo Ghiadoni1, Stefano Taddei1,5, Pierre Boutouyrie6, Alexandre Persu7, Xavier Jeunemaitre4, Aurélien Lorthioir6

1Università Di Pisa
2INSERM, U970, Paris Cardiovascular Research Center–PARCC
3Istituto di Fisiologia Clinica, CNR Pisa
4Université Paris-Descartes
5Azienda Ospedaliero Universitaria Pisana
6APHP, Hôpital Européen Georges Pompidou
7Université Catholique de Louvain

ABSTRACT

Rationale and Aim: This study is aimed at identifying possible patterns of vascular wall disarray and remodeling in radial arteries of patients with fibromuscular dysplasia (FMD), by means of ultrahigh frequency ultrasound (UHFUS).

Methods: UHFUS scans of the radial arteries and of 30 FMD patients and 30 healthy controls were obtained by VevoMD (70 MHz probe, FUJIFILM, VisualSonics, Toronto, Canada). 10 end-diastolic frames for each subject were analyzed. 74 radiomic features and 4 engineered parameters were extracted: intima-media thickness (IMT) and adventitia thickness (AT), an adjunctive acoustic interface for each layer (IMT and AT triple signal). The extracted parameters were used to train classification models, using Support Vector Machine Linear (SVM), K-Nearest Neighbors (KNN), Logistic Regression, Linear Discriminant Analysis (LDA). The models were then tested on an independent validation population (38 FMD patients and 28 healthy subjects).

Results: IMT (185 ± 46 vs 168 ± 37, p = 0.004) and AT (104 ± 34 vs 96 ± 35, p = 0.004) were significantly higher in FMD than in controls. IMT and AT triple signal were also more frequent in FMD than in control images (p < for both). The most accurate classification models were LDA (sensitivity = 0.67, specificity = 0.76, accuracy = 0.71, AUC = 0.71) and Logistic Regression (sensitivity = 0.71, specificity = 0.72, accuracy = 0.71, AUC = 0.71). The models showed and accuracy of about 70% when tested on the validation population.

Conclusions: Wall ultrastructure of radial arteries of FMD patients is extensively altered: IMT and AT are thickened and the first and/or second layer of the arterial wall is splitted, showing a triple signal feature. Radiomic descriptors combined with engineered parameters allow to distinguish between radial images from FMD patients and controls with a 70% accuracy.

© 2020 Association for Research into Arterial Structure and Physiology. Publishing services by Atlantis Press International B.V.

This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: rosam.bruno@gmail.com