

Artery Research Vol. **26(S1)**; 2020, *pp.* S28–S29 DOI: https://doi.org/10.2991/artres.k.201209.022; ISSN 1872-9312; eISSN 1876-4401 https://www.atlantis-press.com/journals/artres

Conference Abstract

P.08 Biomechanical Characterization of Ascending Thoracic Aortic Aneurysms in Humans: A Continuum Approach to *in vivo* Deformations

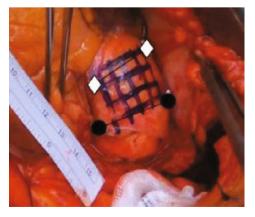
Shaiv Parikh^{1,2,*}, Bart Spronck^{1,2,3}, Gijs Debeij^{1,4}, Berta Ganizada^{1,4}, Mitch Ramaekers^{1,5,6}, Simon Schalla^{1,5,6}, Ehsan Natour^{1,4}, Jos Maessen^{1,4}, Tammo Delhaas^{1,2}, Wouter Huberts^{1,2}, Elham Bidar^{1,4}, Koen Reesink^{1,2}

Keywords

Aneurysm

in vivo

characterisation


ABSTRACT

Background: Dysfunctional cellular mechanosensing appears central to aneurysm formation [1]. We aimed to derive material parameters of aneurysm tissue from *in vivo* deformations, which may increase insight into the underlying structural integrity of the pathological tissue.

Methods: Videos of tracking markers (example **Video** in supplement, screenshot in Figure) placed on ascending aortic segments were captured alongside radial arterial blood pressure in patients undergoing open-thorax ascending thoracic aorta aneurysm (ATAA) repair (n=5) and coronary bypass (controls; n=2). Normalised cross-correlation was used to determine marker displacements, resulting in estimates of systolic/diastolic diameters, distensibility, and cyclic axial engineering strain. A thinwalled, cylindrical geometry was assumed, with amorphous (Neo-Hookean) and fibrous (two-family) constitutive contributions [2]. This framework was fitted to individual patient measurements, by varying parameters c (amorphous material constant), k_1 and k_2 (fiber stiffness and strain stiffening parameter), β (fiber angle w.r.t. circumferential direction), unloaded intact length (L), and internal radius (R_2).

Results: Axial strain tended to be lower (expected) and distensibility larger (unexpected) in aneurysm than controls (Figure). However, the intrinsic pressure-dependence of distensibility must be considered when drawing conclusions related to differences in structural stiffness between both groups [3]. Material stiffness parameters (c and k_1) appeared higher in aneurysm patients than in controls which is in line with previous studies in mice [4].

Conclusion: We are developing a method to determine ATAA material properties from *in vivo* deformations and observed increased material stiffness in ATAA.

		Aneurysm	Control
Measured outcomes			
Diastolic diameter	[mm]	40 ± 5	23 ± 3
DBP	[mmHg]	58 ± 11	34 ± 2
SBP	[mmHg]	90 ± 18	93 ± 7
Distensibility	$[MPa^{-1}]$	4.3 ± 3.0	3.7 ± 1.1
Axial strain	[%]	4.3 ± 2.1	7.6 ± 3.5
Estimated properties			
c	[kPa]	37 ± 29	15 ± 13
k_1	[kPa]	43 ± 26	24 ± 24
R_1	[mm]	17 ± 1	10 ± 1
β	[degrees]	35 ± 3	36 ± 2
k_2	_	34 ± 9	37 ± 3
Ĺ	[mm]	24 ± 5	15 ± 2

Figure | Left: Example of ascending aortic region of interest with tracking markers. Right: Data presented as mean \pm standard deviation. SBP/DBP, systolic/diastolic blood pressure. Estimated properties are defined in the text.

¹CARIM School for Cardiovascular Diseases, Maastricht University

²Department of Biomedical Engineering, Heart and Vascular Centre, Maastricht University

³Department of Biomedical Engineering, School of Engineering & Applied Science, Yale University

⁴Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre

⁵Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre

Department of Cardiology, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht

REFERENCES

- [1] Humphrey JD, Milewicz DM, Tellides G, Schwartz MA. Dysfunctional mechanosensing in aneurysms. Science 2014;344:477-9.
- [2] Holzapfel GA, Gasser TC, Ogden RW. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elas 2000;61:1–48.
- [3] Spronck B, Tan I, Reesink KD, Georgevsky D, Delhaas T, Avolio AP, et al. Heart rate and blood pressure dependence of aortic distensibility in rats: comparison of measured and calculated pulse wave velocity. J Hypertens 2021;39:117–26.
- [4] Bellini C, Bersi MR, Caulk AW, Ferruzzi J, Milewicz DM, Ramirez F, et al. Comparison of 10 murine models reveals a distinct biomechanical phenotype in thoracic aortic aneurysms. J Roy Soc Int 2017;14:20161036.
 - © 2020 Association for Research into Arterial Structure and Physiology. Publishing services by Atlantis Press International B.V. This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).