Conference Abstract

P.07 The Progression of Left Ventricular Ejection Time in Simulated Microgravity

Stefan Orter1,2,*, Stefan Möstl3, Martin Bachler1, Fabian Hoffmann3, Christopher C. Mayer1, Eugenijus Kaniusas2, Michaela Reisinger1, Siegfried Wasserteurer1, Jens Tank3, Bernhard Hametner1

1Austrian Institute of Technology
2Technical University of Vienna
3German Aerospace Center

ABSTRACT

Introduction: Microgravity in space is known to cause major alterations in the cardiovascular system. Left ventricular ejection time (LVET) can be measured by the time from the onset point of the pressure wave to the incisura of the dicrotic notch. The aim of this study was to simulate microgravity by head-down tilt bedrest (HDT) to examine changes in LVET in female and male subjects.

Methods: 24 healthy subjects (16 males and 8 females, height 176 ± 7 cm, weight 77 ± 6 kg, age 37 ± 10 years) were enrolled in a HDT study. The bed rest study applied strict –6° HDT for 60 days. Pulse wave measurements were taken using an oscillometric pressure cuff on the brachial artery. LVET index (LVETi) was calculated according to Weissler et al [1]. LVETi of different measurement times were compared using repeated measures ANOVA with post-hoc analysis using paired t-tests and Bonferroni correction.

Results: Figure shows a decrease of LVETi during bed rest, followed by a sharp rise of LVETi after bed rest. Repeated measures ANOVA confirmed significant differences between measurement times. The increase of LVETi from each HDT measurement day to 4 days after HDT (R + 4) was significant (p < 0.001). There were no significant differences comparing male and female subjects.

Discussion/Conclusion: Overall, we conclude that LVETi decreased during HDT and reached four days after bedrest a similar level as before for both female and male subjects. As LVETi removes heart rate induced effects on LVET, the change in LVETi might be a result of change in ventricular ejection and afterload.

REFERENCE

© 2020 Association for Research into Arterial Structure and Physiology. Publishing services by Atlantis Press International B.V.

This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: stefan.orter@ait.ac.at