Conference Abstract

YI 1.3 Retinal Microvascular Calibers and Incident Depressive Symptoms: The Multi-Ethnic Study of Atherosclerosis

April C.E. van Gennip1,*, Sanaz Sedeghat2, Mercedes R. Carnethon2, Norrinda B. Allen2, Barbara E.K. Klein3, Mary Frances Cotch4, Diana A. Chirinos2, Coen D.A. Stehouwer1, Thomas T. van Sloten1
1Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre
2Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University
3Ocular Epidemiology, University of Wisconsin-Madison
4Division of Epidemiology and Clinical Applications, Intramural Research Program, National Eye Institute, National Institutes of Health

Keywords
Depression
retina
microvasculature
epidemiology

ABSTRACT

Background: Cerebral microvascular dysfunction may contribute to depression via disruption of brain structures involved in mood regulation, but evidence is scarce. The retina allows for direct visualisation of a microvascular bed that shares anatomical and physiological similarities with the cerebral microvasculature. We investigated the association between baseline central retinal arteriolar and venular calibers (CRAE and CRVE) and 7.8-year change of CRAE and CRVE and incident depressive symptoms.

Methods: Longitudinal data are from the Multi-Ethnic Study of Atherosclerosis (MESA) of 3,999 participants (62.3 ± 9.7 years; 48.2% women; 26.6% black) without depressive symptoms at baseline. Presence of depressive symptoms, defined as Centre for Epidemiological Studies Depression Scale score ≥16 and/or use of antidepressant medication, was determined in 2002–2004 (baseline, MESA exam 2) and at three follow-up examinations every 1.5–2 years thereafter. Fundus photography was performed at MESA exam 2 and exam 5 after a mean of 7.8 years.

Results: After a mean follow-up of 6.1 years, 21.7% (n = 869) had incident depressive symptoms. After adjustment for socio-demographic, lifestyle and cardiovascular factors, one SD larger baseline CRVE (21.8 µm) was associated with a higher risk of depressive symptoms (hazard ratio: 1.10; 95% confidence interval: 1.02–1.18), but one SD larger baseline CRAE (14.1 µm) was not (hazard ratio: 1.05; 0.98–1.13). Neither 7.8-year change of CRAE nor CRVE were associated with depressive symptoms (odds ratios: 1.06; 0.90–1.24, and 1.06; 0.91–1.23, respectively).

Conclusions: Larger baseline CRVE is associated with a higher incidence of depressive symptoms. This might support the hypothesis that cerebral microvascular dysfunction contributes to the development of depression.

© 2020 Association for Research into Arterial Structure and Physiology. Publishing services by Atlantis Press International B.V.
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: april.van.gennip@mumc.nl