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1.  OBSTRUCTIVE SLEEP APNOEA: AN 
OVERVIEW AND ITS ASSOCIATION WITH 
CARDIOVASCULAR RISK FACTORS

Obstructive Sleep Apnoea (OSA) is a breathing disorder char-
acterized by narrowing of the upper airway that impairs normal 
ventilation during sleep [1]. Patients may present with daytime 
symptoms (such as excessive daytime sleepiness, poor concentra-
tion and fatigue secondary to sleep disturbance); nocturnal symp-
toms (such as snoring, frequent awakenings, choking sensations) 
or can be asymptomatic. The prevalence of OSA varies significantly 
based on the cohort being studied [2], and in western countries 
is estimated between 2 and 4% of the general population [3]. The 
prevalence of OSA is also projected to increase largely as a result of 
the obesity epidemic in both developed and developing countries 
[4] since an estimated 50% of obese individuals with metabolic 
syndrome and/or diabetes [5] are affected to some degree [6,7]. 
Furthermore, the increase of childhood obesity leads to rising prev-
alence of sleep-disordered breathing even in the young where an 

association with early sign of vascular damage at carotid level has 
also been detected [8]. The prevalence of OSA in the general pop-
ulation is likely to be underestimated since symptoms of OSA are 
often nonspecific and polysomnography, the gold-standard test for 
its diagnosis, has limited availability. With polysomnography, the 
OSA syndrome can be diagnosed when the Apnoea–Hypopnoea 
Index (AHI) is >5 events/h associated with the typical symptoms 
or ≥15 events/h without symptoms [2].

Several treatments for OSA have been proposed over the years 
including oral devices in mild forms [9] and Continuous Positive 
Airway Pressure (c-PAP) in moderate/severe cases. Lifestyle mod-
ification aimed at weight reduction is always recommended along-
side treatment, but a referral for bariatric intervention, such as 
intragastric balloons or surgery, may be needed to achieve signifi-
cant weight loss and improve the severity of OSA in morbidly obese 
subjects [10].

Continuous positive airway pressure and other treatments are not 
only effective in reducing AHI and alleviating symptoms but also 
appear to ameliorate the Cardiovascular (CV) risk profile of the 
affected subjects. A large body of evidence shows that patients with 
OSA often present with increased inflammatory markers [11], 
endothelial dysfunction [12], raised arterial stiffness and Blood 
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A B S T R AC T
Obstructive Sleep Apnoea (OSA) is a breathing disorder characterized by narrowing of the upper airway that impairs normal 
ventilation during sleep. OSA is a highly prevalent condition which is associated with several Cardiovascular (CV) risk factors 
and CV diseases. Despite this clear association, Randomized Controlled Trials (RCTs) have provided equivocal data that 
treatment of sleep apnoea can improve CV outcomes regardless of its ability to reduce blood pressure. Here, we critically review 
the evidence that supports role of OSA as a risk factor for increased arterial stiffness which represents an early manifestation 
of vascular damage often preceding major CV events. Additionally, we examined evidence from interventional RCTs to assess 
if treatment of OSA by continuous positive airway pressure can affect arterial stiffness measured as carotid-femoral pulse wave 
velocity. Overall, a large body of evidence supports the role of OSA as a risk factor for increased arterial stiffness and several 
pathophysiological mechanisms, including activation of the autonomic nervous system, may help to explain the link between 
breathing disorders and vascular alterations (here mainly examined as functional properties). Whether the causal relationship 
between OSA and vascular damage exists or is mostly explained by confounders and whether OSA treatment can improve 
vascular stiffening is still debated.
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Pressure (BP) [13], probably sequentially, all contributing to a sub-
stantial excess in CV risk. Despite the well-recognized association 
between CV risk factors and OSA, whether a causal relationship 
exists or is explained by confounders [14] is still debated although 
more evidence seems to support its independent role both for CV 
risk factors [15] and CV morbidity and mortality [4].

In patients affected by OSA, the increased CV risk is mostly 
related to acute myocardial infarction and/or stroke, which 
are not fully accounted for by other conventional risk factors 
[16,17]. Longitudinal data have also confirmed a dose-response 
association between sleep-disordered breathing severity and 
Hypertension (HT), a relationship which is independent of well-
known confounders [15]. This can then explain, at least in part, 
the excess of CV morbidity from heart failure, coronary artery 
disease [18] and stroke [17,19] in the population affected by OSA. 
Pathophysiologically, several mechanisms can support a causal 
relationship between OSA and CV risk factors, such as intermittent 
hypoxia [20], sympathetic activation and inflammation [4,21].

2.  OBSTRUCTIVE SLEEP APNOEA AND 
ARTERIAL STIFFNESS

Vascular stiffness may be the key component in linking breathing 
disorders with CV morbidity [22] as observed in other respiratory 
conditions such as chronic obstructive airway disease [23]. Several 
mechanisms involved in OSA, including intermittent hypoxia, 
chemoreceptors, baroreflex stimulation and the activation of 

Figure 1 | Simplified pathophysiological mechanisms that link Obstructive Sleep Apnoea (OSA) with increased arterial stiffness.

the autonomic nervous system may link this condition with the 
observed increased vascular stiffness [1] (Figure 1).

Reduced ventilation at night due to supine position can lead to 
intermittent hypoxia increasing oxidative stress and inflammation 
that is mediated by proinflammatory cytokines, adhesion mole-
cules and procoagulant factors, all contributing to endothelial dys-
function, increased BP and early atherosclerosis [24]. At the same 
time, hypoxia and hypercapnia affects inspiratory effort and the 
magnitude of negative intrathoracic pressure against occluded air-
ways which in turn increase left ventricular wall tension and myo-
cardial oxygen demand [25]. Intermittent hypoxemia also activates 
the Renin–Angiotensin–Aldosterone System (RAAS), which is a 
key homeostatic pathway for BP regulation and is also implicated 
in cardiac [26] and vascular remodelling [27].

In this context, it is also important to recognize that a key com-
ponent of the RAAS, Angiotensin II, exerts several actions on the 
sympathetic nervous system both centrally by increasing sympa-
thetic outflow [28] and stimulatory effects on sympathetic ganglia 
and the adrenal medulla [29,30] and peripherally by facilitating 
neurotransmission [31,32]. Angiotensin II also interacts with baro-
receptor reflexes to increase BP [33].

The autonomic nervous system is not only stimulated indirectly 
throughout the RAAS but also directly by recurrent arousals, alter-
ations in intrathoracic pressure and intermittent hypoxia which can 
contribute to sympathetic overactivity [24] (Figure 1).

All the above-mentioned mechanisms promote endothelial dys-
function, metabolic alterations and vascular remodelling. Notably, 
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they also influence BP regulation and since the distending pressure 
inside the blood vessel is a major determinant of arterial stiffness 
in vivo, they all contribute to the increased stiffness itself. However, 
apart from the BP-mediated effects, the autonomic nervous system 
can also play an independent role in the regulation of vascular 
stiffening as recently found in healthy individuals [34] and in sub-
jects with HT [35]. At vascular level, the stress–strain relationship 
which determines arterial stiffness [36] is mostly attributed to the 
structural properties of the extracellular matrix rather than being 
influenced by the tone of vascular smooth muscle [37]. However, 
the latter has shown an independent action not only in muscular 
arteries but also in large elastic arteries (including the aorta) [35] 
included in direct assessment of arterial stiffness.

In this context, evidence of alteration in the autonomic nervous 
system have been documented in subjects affected by OSA includ-
ing elevated circulating catecholamines [38] or increased muscle 
sympathetic nerve activity over 24 h compared to non-apnoeic 
controls [39]. Notably, some of the above-mentioned alterations 
in sympathetic activity can be ameliorated by the treatment in 
patients affected by OSA [40].

In summary, many of the determinants of arterial stiffness includ-
ing increased BP, sympathetic activity and endothelial dysfunction 
can be directly affected by OSA. Cross sectional investigations sug-
gest that OSA is independently associated with arterial stiffness, 
and patients in which OSA coexists with other well-established CV 
risk factors (such as HT) have the highest levels of arterial stiffness. 
However, this association does not prove causality and data from 
RCTs are conflicting [41].

3.  DOES c-PAP TREATMENT AMELIORATE 
ARTERIAL STIFFNESS IN SUBJECT 
WITH OSA?

While the relationship between OSA and arterial stiffness was ini-
tially identified in small observational cohorts [42,43]; this was 
subsequently confirmed by a larger body of evidence showing a 
correlation between the severity of OSA and impaired vascular 
function [22]. However, strong evidence supporting the role of 
treatment, particularly c-PAP, on arterial stiffness is conflicting.

Examining data from observational studies, ultrasound mea-
sures of aortic elastic parameters, such as strain and distensibility, 
appeared improved by c-PAP treatment, although the findings did 
not take potential BP change into account [44]. Two other studies 
[45,46] showed use of c-PAP treatment to significantly decrease 
brachial-ankle pulse wave velocity with no effect on peripheral BP. 
Interestingly, one of these studies [45] also indicated that reduction 
in pulse wave velocity correlated with heart rate variability which 
is considered as a surrogate marker of autonomic nervous system 
activity. Despite some positive results, other researchers have failed 
to demonstrate an effect of OSA treatment on arterial stiffness [47] 
particularly after considering BP as a potential confounder [48].

A previously published metanalysis [22] performed in patients 
with OSA and HT suggested that c-PAP treatment can improve 
arterial stiffness. However, it included only one Randomized 
Controlled Trial (RCT) and three observational studies with lim-
ited data regarding BP change [22]. In their review, Philips et al. 
also reported that only a small number of studies examined the 
effects of treatment of OSA on arterial stiffness but the analysis had 
important limitations (including small sample sizes, lack of a con-
trol group and bias related to duration of interventions) [41].

The heterogeneity of these results can probably be related to the 
methodology used to assess arterial stiffness as well as differences 
in the study populations. To partially address these limitations, 
in this review, we have focused our analysis to only include inter-
ventional clinical trials in which arterial stiffness was measured as 
cfPWV. Arterial stiffness assessed by cfPWV is recognized as the 
non-invasive gold standard technique in vivo and is well established 
as an independent predictor of CV morbidity and mortality inde-
pendently of BP [49,50]. Based on the meta-analysis of Ning et al. 
[51], four RCTs have investigated the effects of c-PAP treatment on 
arterial stiffness in adult population (Table 1) and a recent RCT in 
2020 examined patient with resistant HT.

In one study [52], 24 patients with recently diagnosed OSA, with-
out other comorbidities or CV factors, were randomly assigned to 
receive c-PAP or no treatment. After 4 months, the treated group 
had a significant decrease in cfPWV (from 10.4 ± 1.0 to 9.3 ± 
0.9 m/s; p = 0.001) while the control group showed no change. 
Diastolic BP decreased in parallel with arterial stiffness after 
c-PAP treatment, although the difference was reported not to be 

Table 1 | Summary of RCTs exploring the effect of continuous positive air pressure (c-PAP) treatment on arterial stiffness measured as carotid-femoral 
pulse wave velocity (cfPWV)

Study Population Design Duration of 
intervention ∆PWV (m/s) Device for PWV

Drager et al. [52] 24 pt with severe OSA and no 
comorbidities or cardiovascular 
risk factor

Randomized, not-blinded 4 months −1.00 (1.19, −0.10) Complior

Litvin et al. [53] 44 pt with severe OSA and grade 
II-III HT

Randomized, double-blind, 
crossover

6 weeks −0.7 (−0.95, −0.45) Sphygmocor

Jones et al. [54] 53 pt with moderate OSA and no 
CVD, HT or DM

Randomized, double-blind, 
crossover

24 weeks −0.1 (−0.24, 0.04) Micromanometer (Millar  
Instruments) and Sphygmocor

Paz y Mar  
et al. [55]

153 pt with moderate OSA, two 
arms balanced for cardiopathy, 
medications and HT

Randomized, double-blind, 
parallel-group

2 months −0.18 (−1.18, 0.82) Sphygmocor

Cardoso et al. [56] 125 patients with resistant HT Randomized, not-blinded, 
parallel-group

6 months −0.40 (−0.82, 0.02) Complior
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significant between the two groups and the change in BP did not 
correlate with changes in vascular parameters.

In a crossover study of 44 subjects with severe OSA and grade 2 and 
3 HT, c-PAP or sham treatments were performed for 3 weeks [53]. 
On c-PAP, cfPWV showed an additional reduction of 0.7 m/s (p = 
0.03) alongside decrease in all BP components including aortic sys-
tolic and diastolic BP (approximately 7 and 5 mmHg respectively). 
Whereas Jones et al. [54] failed to show a significant improvement 
in vascular stiffness with c-PAP. 53 subjects with moderate-severe 
OSA (AHI ≥ 15) were randomly assigned to 12-weeks treatment 
of c-PAP (n = 25) or sham c-PAP (n = 27) before crossing into the 
other arm of the study for a further 12 weeks. While BP was low-
ered by c-PAP treatment, there was no difference in cfPWV [54].

In 153 patients with recently diagnosed moderate OSA (AHI ≥ 
15) was designed to randomly assign participants to c-PAP treat-
ment (n = 76) or placebo c-PAP (n = 77) for 2 months [55]. In the 
first group, only 29 subjects were compliant with therapy, while 38 
withdrew during the intervention. At the end of the trial, there was 
no significant difference between cfPWV in the c-PAP group com-
pared to the control group, and neither arm showed BP changes 
during the trial [55].

Finally, Cardoso et al. [56] conducted a RCT in subjects with resis-
tant hypertension and moderate/severe OSA in which 62 were 
assigned to cPAP treatment and 63 were control for 6 months. 
The study did not find any significant reduction in cf-PWV in the 
interventional group compared to the control one but a differences 
in the progression of aortic stiffness between the two (−0.40 m/s, 
95% CI −0.82 to +0.02 m/s; p = 0.059 mostly driven by a significant 
increase in arterial stiffness in the control group).

Clearly, the larger trial [55] influenced the most on overall results 
but had major dropouts and the trial in resistant HT [56] was 
underpower to show intergroup differences. Interestingly, RCTs 
which showed a significant decrease in cfPWV (or its progression) 
included patients with a more severe form of OSA (AHI ≥ 30) and a 
significantly higher percentage of hypoxia (calculated as sleep time 
<90% oxygen saturation in total sleep time). This observation is 
in line with evidence from observational studies and RCTs which 
studied the effect of c-PAP on BP [57–59]. Another aspect which 
should be considered is the baseline value of cfPWV which dif-
fered in the four trials, with higher values in positive trials (10.4, 
13.9 and 9.4 m/s) [52,53] compared to the negative ones (7.6 and 
9.05 m/s) [54,55] suggesting a potential limitation related with the 
effect size. A relatively small sample size, presence of comorbidities 
and compliance to treatment may also be additional confounders 
in the analysis.

Of note, none of the RCTs included any measurement of autonomic 
function which could represent one of the pathophysiological 
mechanisms linking OSA and arterial stiffness.

To summarize, a large body of evidence supports the role of OSA as 
a risk factor for increased arterial stiffness. Several pathophysiolog-
ical mechanisms, including the activation of the autonomic nervous 
system, may help explain the link between the breathing disorder 
and the vascular alterations (here mainly examined as functional 
properties rather than remodelling). Whether a causal relationship 
between OSA and vascular damage exists or is mostly explained 
by confounders and whether OSA treatment can improve vascu-
lar stiffening is still debated. More RCTs are warranted and their 

design should consider changes in BP as one of the main confound-
ers in the analysis.
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