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1. INTRODUCTION

The prevalence of cognitive impairment and dementia is increasing 
in Japan owing to the aging population. It is important to examine 
the age-related decline of cognitive function and prevent the onset 
of dementia [1,2]. Cognitive function, especially executive func-
tion, is required for functional mobility and is required for making 
decisions and solving problems. Furthermore, executive function 
helps the elderly maintain their independence. Executive func-
tion plays a role in controlling attention and judgment about one’s 
surroundings and maintaining daily quality of life [3]. Cognitive 
dysfunction is associated with cerebral hypoperfusion and vas-
cular dysfunction [4,5]. Increases in central arterial stiffness are 
correlated with cerebral arterial lesions and decreased cognitive 
function, including memory and executive processes in older indi-
viduals [6,7]. Recently, we reported that arterial stiffness is asso-
ciated with executive function in middle-aged and older adults 
[8]. Moreover, postmenopausal depletion of sex hormones was 
found to contribute to a higher risk of dementia and accelerate the 
increase in arterial stiffness [9]. Therefore, it is important to further 
investigate executive function and arterial stiffness in postmeno-
pausal women.

Blood plasma homocysteine is an amino acid that is associated 
with the methyl donor, methionine, and helps to regulate intra-
cellular metabolism [10]. Homocysteine stimulates oxidative stress 
and increases matrix metalloproteinase activity, which contributes 
to vascular damage and endothelial dysfunction [11]. It has been 
reported that homocysteine levels increase after menopause, and 
hyperhomocysteine is a risk factor for arteriosclerosis [12], myo-
cardial infarction [13,14], and ischemic cerebrovascular disorder 
[15]. A meta-analysis revealed that a high blood concentration 
of homocysteine might be the cause of cerebrovascular disease 
[16]. It has been reported that hyperhomocysteine is associated 
with dementia in Alzheimer’s disease [17]. In addition, it has been 
shown that blood homocysteine levels are associated with cogni-
tive decline and dementia [18–20]. It is plausible that these det-
rimental effects of homocysteine on the vasculature could affect 
executive function. Mooijaart et al. [21] reported that elevated 
homocysteine levels were associated with cognitive impairment 
in individuals over 85 years. Although both plasma homocyste-
ine and arterial stiffness may affect executive function, the causal 
relationships are not well understood. This study aimed to investi-
gate the association between executive function, arterial stiffness, 
and plasma homocysteine in postmenopausal women using a 
cross-sectional design.

2. MATERIALS AND METHODS

2.1. Participants

Eighty-two healthy middle-age and older postmenopausal women 
(49–78 years, mean: 61.8) were recruited by local advertisements. 
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A B S T R AC T
Age-related decreases in executive function and an increase in arterial stiffness and plasma homocysteine levels are related to 
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directly (b = 0.24; p = 0.037) and indirectly (b = 0.12, 95% confidence interval [0.007, 0.238]) affected the Stroop interference 
time. These results suggest that higher plasma homocysteine levels are associated with a decline in executive function mediated 
by higher artery stiffness in middle-aged and older women.
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2.2.2. Arterial stiffness

Brachial-ankle Pulse Wave Velocity (baPWV) was measured using 
a pulse wave analyzer (PWV/ABI, Komaki, Japan). The cuffs were 
wrapped around the upper arm and ankles, and the ankles were 
connected to a plethysmograph sensor. Pressure waveforms 
were recorded simultaneously in the brachial and tibial arteries to 
estimate the time interval between the first rise of the brachial and 
tibial waveforms. The distances from the aortic valve opening to 
the upper arm to the ankle were determined using an estimation 
formula obtained from the patient’s height. The baPWV is obtained 
by dividing La − Lb by the latency difference of the pulse wave rise 
of the upper arm and ankle [24].

2.2.3. Blood chemistries

A sample of blood was collected using an antecubital vein after 
fasting overnight. Plasma samples were centrifuged at 3000 rpm 
at 4°C for 15 min and stored frozen at −80°C until use. Plasma 
homocysteine levels were measured using liquid chromatography 
with tandem mass spectrometry by a commercial laboratory (LSI 
Medience Co. LTD., Tokyo, Japan).

2.3. Statistical Analysis

The Shapiro–Wilk test was used to evaluate normality. Normally 
distributed data are presented as the mean ± standard devia-
tion, while non-normally distributed data are presented as the 
median and interquartile range. Relationships were evaluated 
using Spearman’s rank correlation coefficients and partial correla-
tion analyses adjusted for age. Mediated analyses were performed 
using the plasma homocysteine as the independent variable, 
baPWV as the mediated variable, and Stroop interference time 
as the dependent variable to investigate the association between 
the Stroop interference times, plasma homocysteine, and baPWV. 
Mediated analyses were performed using IBM SPSS macro func-
tions (INDIRECT macro for SPSS [25]). The mediation effect was 
examined using non-parametric bootstrapping tests. SPSS statisti-
cal package version 24 (SPSS, IBM, Chicago, IL, USA) was used for 
the statistical analyses.

3. RESULTS

Table 1 displays the characteristics of the participants. The Stroop 
interference time was significantly correlated with the plasma 
homocysteine levels (Figure 1, r = 0.40, p < 0.001). The Stroop 
interference time was also significantly correlated with baPWV 
(Figure 2, r = 0.38, p = 0.001). Furthermore, plasma homocysteine 
levels were significantly correlated with baPWV (Figure 3, r = 0.48, 
p < 0.001). After adjusting for age, significant correlations were 
observed between the Stroop interference time and plasma homo-
cysteine (partial r = 0.37, p = 0.001), the Stroop interference time 
and baPWV (partial r = 0.24, p = 0.035), and plasma homocyste-
ine and baPWV (partial r = 0.47, p < 0.001). Figure 4 shows the 
mediation analysis. Plasma homocysteine significantly explained 

Table 1 | Characteristics of the participants

Variables Values

n 82
Age, years 61.8 ± 6.2
Height, cm 155.8 ± 5.0
Weight, kg 53.5 ± 7.7
BMI, kg/m2 22.0 ± 2.8
TC, mg/dL 231.5 ± 43.4
HDL, mg/dL 66.5 [54.8–80.3]
LDL, mg/dL 140.9 ± 34.9
TG, mg/dL 83.5 [60.8–122.55]
SBP, mmHg 123.6 ± 14.4
DBP, mmHg 74.9 ± 9.2
HR, bpm 62.4 ± 7.4
baPWV, cm/s 1387.0 [1276.5–1514.5]
Homocysteine, nmol/mL 9.1 [7.8–10.2]
Stroop interference time, s 0.38 [0.28–0.47]

Data are shown as the mean ± SD, median [interquartile range], as appropriate.  
n, number of subjects; BMI, body mass index; TC, Total cholesterol; HDL, high density 
lipoprotein cholesterol; LDL, low density lipoprotein cholesterol; TG, Triglycerides; SBP, 
systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; baPWV, brachial 
pulse wave velocity.

The participant characteristics are presented in Table 1. The inclu-
sion criteria were (1) nonsmoker, (2) not taking any medication, 
and (3) receiving hormone replacement therapy. The exclusion cri-
teria were (1) history of neurological disorder, (2) cerebrovascular 
disease, (3) receiving treatment for hypertension, (4) dyslipidemia, 
(5) diabetes, (6) history of gastroenterological surgery, and (7) use 
of dietary supplements that influence blood pressure. All partici-
pants provided their informed consent to participate in the study. 
The study protocol was reviewed and approved by the ethics com-
mittee of the University of Tsukuba.

2.2. Measurements

2.2.1. Executive function

The participants performed the Stroop task [22] using the Multi-
PAS System (DKH, Tokyo, Japan). Based on a previous study [23], 
the color word Stroop task was used in this study, which involved 
two experimental conditions, namely the non-executive naming 
condition (EASY) and the executive condition (HARD). In the 
EASY condition, the color visual mark stimulus (XXXXX, one 
each of red, blue, green, and yellow) was presented at the top of 
the screen. The participants were asked to identify the ink color 
for the presented color word by selecting the corresponding word 
presented in black ink at the bottom right or left of the screen. In 
the HARD condition, participants responded to color words dis-
played in incongruent colors (e.g., the word RED was presented 
in blue); participants were asked to identify the corresponding 
ink color for the right or left words, which were also displayed 
in incongruent colors at the bottom of the screen. Each condi-
tion consisted of two sets of 15 trials, each of 60 s. We evaluated 
the Stroop interference time, which was estimated as the reaction 
time difference between the EASY and HARD conditions and is 
an index of executive function.
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Figure 3 | Relationship between baPWV and homocysteine. baPWV, 
brachial pulse wave velocity.

Figure 2 | Relationship between baPWV and Stroop interference time. 
baPWV, brachial pulse wave velocity.

Figure 1 | Relationship between homocysteine and Stroop interference 
time.

Figure 4 | Mediation analysis. The effect of homocysteine on Stroop 
interference time mediated by baPWV. baPWV, brachial pulse wave 
velocity; b, standardized regression coefficient; CI, 95% confidence 
interval.

the Stroop interference time (b = 0.36; p = 0.001) and baPWV  
(b = 0.44; p < 0.001). Furthermore, baPWV significantly explained 
the Stroop interference time (b = 0.27; p = 0.020). Moreover, when 
baPWV was used as the mediating variable, plasma homocysteine 
directly (b = 0.24; p = 0.037) and indirectly (b = 0.12; 95% confi-
dence interval [0.007, 0.238]) affected the Stroop interference time, 
respectively. This result indicates that baPWV partially mediates 
the relationship between plasma homocysteine and the Stroop 
interference time, to a significant level (Table 2).

4. DISCUSSION

In this study, we investigated the association between executive func-
tion, arterial stiffness, and plasma homocysteine in middle-aged 
and older women. We found that the Stroop interference time was 
significantly correlated with plasma homocysteine and baPWV. In 
addition, plasma homocysteine levels were significantly correlated 
with baPWV. Furthermore, the mediation analyses showed that 
baPWV partially mediated the relationship between plasma homo-
cysteine and the Stroop interference time. These results suggest that 
higher plasma homocysteine levels are associated with a decline in 
executive function partially mediated by higher artery stiffness in 
postmenopausal women.

Emerging evidence has shown that a higher homocysteine level is  
a risk factor for stroke and dementia [26]. Homocysteine has a 
neurotoxic action that damages neurons and further promotes 
apoptosis [20]. Homocysteine overstimulates the N-methyl-d-
aspartate receptor, which leads to neurotoxicity [27] and smooth 
muscle cell proliferation, as well as increased platelet aggregation, 
strokes, and white matter lesions [20]. It has been shown that blood 
homocysteine concentration is associated with cognitive decline 
and dementia [28,29]. Prins et al. [28] reported a relationship 
between an increase in homocysteine levels and a decrease in 
cognitive function, particularly psychomotor speed, in 1077 older 
adults [28]. Lewerin et al. [29] reported that high homocysteine 
adversely affects movement and cognitive performance, especially 
in digit symbol and block design tests [29]. Consistent with previous 
studies, we demonstrated that plasma homocysteine levels were 
significantly correlated with the Stroop interference time. These 
results suggest that blood homocysteine levels are associated with 
executive function in postmenopausal women.



 A. Shindo-Hamasaki et al. / Artery Research 27(1) 32–37 35

Homocysteine is also known to reduce nitric oxide bioavailability 
by stimulating reactive oxygen species. Endothelial function and 
compliance of the arterial wall are lost due to vascular damage 
[11]. It has been reported that higher levels of homocysteine are 
associated with the prevalence of arteriosclerosis [30]. Chen et al. 
[31] recently demonstrated that higher homocysteine levels were 
associated with an increased prevalence of arterial stiffness. In the 
present study, we showed a relationship between executive function 
and homocysteine, and between executive function and arterial 
stiffness. Increased arterial stiffness by higher homocysteine may 
partly contribute to age-induced cognitive decline.

We found that baPWV was significantly related to executive func-
tion, which was evaluated using the Stroop interference time. 
Concerning vascular function and cognitive function, some stud-
ies have focused on vascular function as a predictor of cognitive 
decline [32,33]. Previous studies have reported that higher baPWV 
and blood pressure fluctuations increase the risk of a decline in 
cognitive function in older adults [34]. Furthermore, pulse pressure 
and PWV have also been associated with cognitive decline [32]. 
Recently, we found that carotid arterial stiffness was correlated 
with executive function, which was evaluated using the Stroop 
interference time, similar to the present study [8]. Taniguchi et al. 
[33] found that higher baPWV was related to cognitive decline in 
patients with hypertension using the mini-mental state examina-
tion. Central artery stiffness and ability to buffer pulsatile strain 
may be attributed to cerebral hypoperfusion and microvascu-
lar damage, which may deteriorate cognitive function [35,36]. 
Consistent with previous studies, our results also showed a rela-
tionship between baPWV and executive function. Specifically, 
we found that individuals with lower baPWV had shorter Stroop 
interference times. It has been reported that the increase in arterial 
stiffness in patients with end-stage renal disease was independently 
correlated with plasma homocysteine concentration [37]. In addi-
tion, some evidence shows that an increase in homocysteine may 
play a role in vascular damage and arterial stiffness [38,39]. In this 
study, a significant relationship between homocysteine and exec-
utive dysfunction mediated by arterial stiffness was evidenced. 
However, the mediation analysis did not exhibit a significant rela-
tionship. Therefore, increased arterial stiffness may lead to a decline 
in cognitive performance, especially in executive function.

There are several limitations to this study. First, the present study 
had a relatively small sample size, and we focused only on healthy 
postmenopausal females. The mediation analysis adjusted for age 
and blood pressure did not reach statistical significance between 
baPWV and the Stroop interference time. On the other hand, 
each relationship between homocysteine, baPWV, and the Stroop 
interference time was significant after adjusting for age and blood 
pressure in this study. Although homocysteine, baPWV, and the 
Stroop interference time seem to be associated with each other, the 
hypothesis that arterial stiffness mediates the impact of homocys-
teine on executive function may not be affected by age and blood 
pressure. In the future, a mediation analysis with a larger sample 
size, including young adults, patients with hypertension, and 
males, should be conducted. Second, we only used the Stroop task 
to measure executive function, but further studies are warranted to 
investigate other functions such as working memory, verbal learn-
ing, processing speed, and category fluency. Third, homocysteine 
is a metabolite of the amino acid, methionine, which is primarily 
metabolized in the kidney, and chronic renal dysfunction increases 
blood homocysteine levels. It has been reported that a higher blood 
homocysteine concentration was found in patients with renal dis-
ease [40,41]. However, we did not measure renal function, such as 
the estimated glomerular filtration rate or albuminuria, as there 
were no subjects with renal disease in this study.

5. CONCLUSION

The present study demonstrated that plasma homocysteine was  
significantly associated with arterial stiffness and executive func-
tion, and arterial stiffness was also associated with executive 
function in postmenopausal women. Furthermore, the mediated 
analysis revealed that the association between plasma homocyste-
ine and executive function was partially mediated by arterial stiff-
ness. These results suggest that the homocysteine-induced increase 
in arterial stiffness involves decreased executive function.
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Table 2 | Statistics of mediation analysis

Dependent variable Stroop interference time (s): ST
Independent variable Homocysteine (nmol/mL): HCY
Mediator variable brachial Pulse Wave Velocity (cm/s): baPWV
Sample size 82
Model 1: HCY to baPWV
R2 = 0.19 p < 0.001 b p CI

HCY 0.44 <0.001 [0.24, 0.64]
Model 2: HCY to ST
R2 = 0.13 p = 0.001 b p CI

HCY 0.36 0.001 [0.15, 0.57]
Model 3: The effect of HCY and baPWV on ST
R2 = 0.19 p < 0.001 b p CI

HCY 0.24 0.037 [0.02, 0.46]
baPWV 0.27 0.020 [0.04, 0.49]

Indirect effect of HCY on ST b Boot LLCI Boot ULCI
baPWV 0.12 0.007 0.238

b, standardized regression coefficient; CI, confidence interval; Boot, bootstrap.
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