

P154 Effect of Vitamin D Deficiency on Insulin Induced Vasodilatation and Receptor Expression in Rat Model of Polycystic Ovary Syndrome

Bálint Bányai¹, Benko Rita², Tarszabó Róbert², Lajtai Krisztina², Horváth Eszter Mária², Várbíró Szabolcs²

¹Semmelweis University Department of Physiology, Budapest, Hungary ²Semmelweis University Department of Obstetrics and Gynaecology, Budapest, Hungary

ABSTRACT

In polycystic ovary syndrome (PCOS) hyperandrogenism and metabolic dysfunction increase cardiovascular risk. Vitamin D3 deficiency is a common comorbidity in PCOS. Our aim was to examine the alterations of insulin-induced vasodilation and receptor expression in rat aorta in a PCOS model.

Methods: Female Wistar rats were treated as follows: 1. vitamin D supplemented group (D+T-); 2. vitamin D deficient (D-T-), 3. vitamin D supplemented with transdermal testosterone application (D+T+) and 4. vitamin D deficient with transdermal testosterone (D-T+). Wire myograph was used for testing insulin relaxation of aorta rings in physiological salt solution and under NOS inhibition. Insulin (IR) and vitamin D receptor (VDR) density was examined by immunohistochemistry.

Results: Insulin-induced vasodilatation of the aorta rings were significantly lower in both vitamin deficient compared to the vitamin supplemented groups (p < 0.05). NOS inhibition significantly reduce the relaxation. Aorta endothelial IR expression was significantly higher in the vitamin D deficient group, meanwhile in the testosterone-treated groups (D+T+; D-T+) the expression was significantly lower (Area%: D+: 0.830 ± 0.10 ; D+T+: 0.298 ± 0.06 ; D-: 1.364 ± 0.12 ; D-T+: 0.354 ± 0.15 , p < 0.05 in D- & D+T+ & D-T+ vs D+. p < 0.01 D+T+ & D-T+ vs D-). VDR density was significantly higher in the vitamin D deficient groups (Area% VDR: D+: 41.56 ± 5.58 vs D-: 60.63 ± 5.23) Testosterone treatment have not any effect on VDR expression.

Conclusion: Vitamin-D deficiency causes impaired insulin induced vasodilation. Increased IR density could not compensate altered insulin-induced relaxation.

© 2019 Association for Research into Arterial Structure and Physiology. Publishing services by Atlantis Press International B.V. This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).