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Short Communication

Evoking Awareness toward Muscular Arterial Remodeling  
and Stiffness
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1. INTRODUCTION

The leading cause of this report is that for many years the focus of 
clinical research was directed mainly toward large arteries remod-
eling. In the past decade the assessment of microcirculatory func-
tion was introduced [1] outlining its importance in cardiovascular 
risk stratification. However, the remodeling of arteries in-between, 
muscular arteries, is still poorly understood. Actually, there is no 
doubt that central arterial stiffness is an independent predictor of 
cardiovascular events, cardiovascular and all-cause mortality [2,3], 
and even target organ damage [4,5]. Besides, non-invasively mea-
sured central arterial stiffness [carotid-femoral pulse wave veloc-
ity (cfPWV)] strongly correlates with invasively measured aortic 
arterial stiffness [6]. Though, by using this approach there is a risk 
to develop rather fragmental attitude to arterial tree and to miss 
the remodeling patterns in the whole branching system of arteries. 
The aim of this report is to evoke awareness and interest towards 
peripheral muscular arteries remodeling.

The complexity of elastic and muscular arteries wall has been 
well-described previously [7]. Aging results in elastin degrada-
tion and pronounced collagen synthesis with deposition in arterial 
wall. This process is accompanied by the activation, proliferation 
and migration of Vascular Smooth Muscle Cells (VSMCs), endo-
thelium dysfunction and altered extracellular matrix [8]. Elastic 
arteries produce more basal nitric oxide [9] and are able to stretch 
and compensate pressure waves from the left ventricle. On the 
other hand, muscular arteries seem to be less affected by age [10]. 
Reasons for that are not properly understood. Tunica media layer 
of peripheral muscular arterial wall is very rich in VSMCs, whereas, 
tunica intima is poor in elastic fibers [9], thus, elastin degradation 

process here is not so pronounced. In comparison to elastic arter-
ies, VSMCs are more elongated and narrower, therefore, have better 
ability to contract and serve for pulse-smoothening [11].

Aging related geometrical remodeling along arterial tree is incon-
sistent. The expert reports [12] usually suggest to measure central 
arterial stiffness as the superior marker for CV risk assessment [13]. 
Some of the researchers oppose this opinion and use other indexes, 
for example, the calculation of mismatch between elastic and  
muscular arteries (carotid-femoral PWV divided by carotid-radial 
PWV). The downside is that this ratio has limited performance in 
general population and is more specific to certain cohorts: chronic 
kidney disease (CKD) [14,15], diabetes [16], female gender [17] 
(with high cardiovascular risk profile) and related to male sexual 
function [18]. Analysis of cardiologic ambulatory patients [10] 
revealed unchanged aging related arterial stiffness in muscular 
arteries, but increased pulse wave velocity mismatch, suggesting the 
link to end-organ damage. The results of all studies are inconsistent, 
but it implies that increased mismatch could be related to altered 
microvasculature function.

By sticking to the idea that peripheral arterial stiffness is a poor 
predictor of CV risk and all-cause mortality [19] we are missing the 
whole picture. Interesting data were published by Bortolotto et al. 
[13]. They have measured Intima Media Thickness (IMT) in both 
the carotid and radial arteries. Aging resulted in more pronounced 
IMT thickening in carotids. However, further works [20] revealed 
that high-resolution radial IMT can compete against carotid IMT 
in evaluating arterial remodeling burden and that it is also related 
to previous cardiovascular disease (CVD) and ischemia. An inter-
esting study in renal artery biopsies reported a positive relationship 
between renal arteriosclerosis and augmentation index, a surro-
gate for peripheral arterial stiffness [21]. The main limitation of 
this study was borderline subject age for better performance of  
augmentation index [12].
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It is worthwhile noting that one of the main players in arterial 
remodeling is the response to wall shear stress, which induces swell-
ing and proliferating of endothelial cells [22]. Further, endothelial 
cells release chemotactic compounds and inflict inflammatory 
response leading to activation of VSMCs. The behavior of VSCMs 
and their transdifferentiation will be discussed later in this report. 
Shear stress is not always a “bad player” [22], especially in the con-
text of exercise-induced arterial adaptation, as it enhances peripheral 
function. A study [23] with 10 young healthy men applied low flow- 
mediated (L-FMC) vasodilatation technique during acute dynamic 
exercise with a large muscle mass and registered post-exercise aug-
mentation of the radial artery L-FMC response. Authors suggest 
that this enhanced vasoconstriction might explain increased post- 
exercise cardiovascular risk, because it might mimic coronary artery 
response. Moreover, due to nonuniform wall shear stress thorough 
whole arterial tree [24] is atherosclerosis [25] more pronounced in 
lower extremities conduit arteries. This shows clearly that muscular 
arterial remodeling is highly dependent on the site.

Muscular arteries remodel mainly longitudinally, this induce 
increase in intima-to-media thickness and endothelial dysfunction 
[26]. On account of the fact that there are no interventional studies 
which measured muscular arterial stiffness directly and compared it 
to non-invasive methods, caution should be taken when analyzing 
peripheral pulse wave velocity. There is no assurance that measure-
ment of carotid-femoral PWV or femoral-distal PWV fully corre-
spond the actual arterial stiffness. Calculation of pulse wave velocity 
depends on the distance and pulse transit time [27]. Besides, the 
length (distance) of the arteries is age predetermined. In other words, 
both in muscular and elastic arteries aging results in increased length 
and tortuosity [28], however, muscular arteries does not increase in 
diameter. Therefore, the accuracy of measuring technique of dis-
tance between two muscular arteries pulse sites could be mistaken. 
Invasive studies of peripheral arterial stiffness and/or methods for 
better measurement of pulse transit distance are suggested.

It is important to mention one of crucial arterial remodeling aspects -  
vascular calcification (VC). VC appears mainly as medial calcifi-
cation in muscular arteries [29]. Medial calcification is the result 
of VSMCs apoptosis and transdifferentiation to osteoblasts and 
therefore ectopic VC [10]. These changes lead to diminished ability 
to properly contract and to altered arterial resistance. This hypoth-
esis might be supported by lower peripheral pulse pressure values 
in elderly people [30] and by increased mismatch between elastic 
and peripheral arterial stiffness observed in CKD [16] and etc. 
Nevertheless, medial calcification has been attributed to normal 
aging, diabetes mellitus, CKD and obstructive sleep apnea [29].

The crosstalk of peripheral arterial remodeling and early life factors 
should be elucidated. A study on 2856 subjects showed that AIx is 
inversely associated with birth weight and participants born Small 
for Gestational (SGA) age had even higher values of augmentation 
index (Aix) [31]. However, other previous researchers could not 
confirm this link [32] and noticed no difference in carotid media 
intima thickness in regard of SGA [33]. There is still a need to 
further explanation how early life factors affect the whole arterial 
branching system.

In conclusion, the meaning of peripheral arterial remodeling and stiff-
ness is poorly understood. We should not forget that aging is not a local 
process, but affects the whole arterial tree. Muscular arteries become 
longer, more turtous and increase in wall to lumen ratio. By learn-

ing lessons from peripheral arteries we could find the missing puzzle 
pieces of normal and accelerated arterial aging. Future studies should 
target relationship of peripheral arterial remodeling and early life fac-
tors. More accurate solutions in measuring arterial stiffness in periph-
ery and invasive validation of these methods are also encouraged.
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