

Artery Research

ISSN (Online): 1876-4401 ISSN (Print): 1872-9312 Journal Home Page: <u>https://www.atlantis-press.com/journals/artres</u>

P132: CONTINUOUS MEASUREMENTS OF CENTRAL BLOOD PRESSURE DURING MENTAL STRESS MONITORING

Valentina Vassilenko, Andreia Serrano, Paulo Bonifacio, Peter Roth, Viktor Fetter

To cite this article: Valentina Vassilenko, Andreia Serrano, Paulo Bonifacio, Peter Roth, Viktor Fetter (2018) P132: CONTINUOUS MEASUREMENTS OF CENTRAL BLOOD PRESSURE DURING MENTAL STRESS MONITORING, Artery Research 24:C, 117–118, DOI: https://doi.org/10.1016/j.artres.2018.10.185

To link to this article: https://doi.org/10.1016/j.artres.2018.10.185

Published online: 7 December 2019

Results: The manual approach provided intra-operator CV of 6.6% and 3.9% for DD and 6.5% and 6.6% for IMT (first and second operator). The automatic approach provided CV equal to 6.6%, 5.4%, 4.5% and 3%, respectively. Inter-operator CV were 11.3% for DD and 3.9% for IMT (manual), and 10.9% and 5.8% (automatic). Bland-Altman analysis provided non-significant bias for both IMT and DD measurements comparing manual and automatic approach. In the whole population, radial IMT was correlated with age (r = 0.35, p = 0.02) and pulse pressure (r = 0.41, p = 0.008), not with BMI (r = 0.05, p = 0.76) and mean blood pressure (r = 0.17, p = 0.28). No sex differences were observed.

Conclusions: We obtained good CV values for both the intra- and inter-operator reproducibility; furthermore, the manual and the automatic approach provided similar results. Radial IMT increases with age and pulse pressure.

P129

DETERMINATION OF THE DIASTOLIC PRESSURE DECAY CONSTANT (TAU) FROM RADIAL TONOMETRY: DEMOGRAPHIC AND HEMODYNAMIC ASSOCIATIONS IN NORMAL AND HYPERTENSIVE INDIVIDUALS

Joseph Izzo, Sherif El-sayed, Rahil Ahmed, Peter Osmond, Benjamin Gavish University at Buffalo, Buffalo, NY, USA

Introduction: The feasibility of measuring the diastolic pressure-decay constant (tau) in normal and hypertensive humans is not established and the clinical and physiological relevance of tau is not known.

Methods: Studies were performed in the non-invasive cardiac laboratory in subjects who had been supine for at least 30 minutes. Measurements included standard oscillometric cuff BP, echocardiography (stroke volume [SV] and systemic vascular resistance [SVR]), pulse wave velocity (PWV, both aortic [heart-femoral] and peripheral [femoral-ankle]), and radial tonometry (Sphygmocor). Tau was estimated by photo-digitizing the pulse contour (Webplot digitizer) and modeling the terminal diastolic component according to the formula: $P = A + (SBP-A)^{*}exp(-(t-t0)/tau)$, where P is pressure, A is the modeled diastolic BP, and t0 is the start of the mono-exponential diastolic pressure decay.

Results: Full data were available In 76 individuals (mean age 55 years, weight 84 kg, BP 138/79 mmHg, resting HR 67; 45% female). Using simple Pearson correlations, tau was positively correlated with age, female gender and SVR, but negatively correlated with HR (all p < 0.05). Tau was unrelated to blood pressure (systolic, diastolic, mean or pulse pressure) or to peripheral or central PWV. In a forward stepwise multiple regression model of tau that included various hemodynamic indicators, only SVR survived, whereas BP, HR, SV, and PWV were excluded.

Conclusions: Tau can be estimated from radial tonometry and is most closely related to SVR, age, and female gender. Further application of tau (e.g. in the study of circulatory models) also seems feasible.

P130

COMPARISON BETWEEN PWV MEASURED FROM CUTANEOUS LENGTH BY SPHYGMOCOR AND BY MRI LENGTH TRACED ALONG THE WHOLE AORTA

Marina Cecelja King's College London, UK

Background: Accuracy of non-invasive PWV as m/sec is impeded by crude surface estimates of aortic length. We compared PWV measured using the Sphygmocor via surface length measurements with PWV measured using MRI with distance traced more precisely along the whole imaged aortic length.

Methods: Magnetic resonance imaging (MRI) was performed in 74 asymptomatic women aged between 51–80 years of age. Carotid-femoral PWV was measured using Sphygmocor. The path distance between the carotid and femoral sites was estimated from the distance between the sternal notch and femoral artery at the point of applanation. Phase-contrast MRI was performed at the level of the aortic arch and distal to the aortic bifurcation to obtain aortic flow. Aortic distance was measured by tracing the centre of the aorta from a black-blood MRI sequence.

Results: Mean (\pm SD) carotid-femoral transit time (TT) measured by Sphygmocor (58 \pm 11 ms) was 2.9 [95% confidence interval (CI) 0.85–5.0]ms higher than aortic TT measured by MRI (54 \pm 12 ms). The carotid-femoral surface distance estimate (552 \pm 33 mm) was 15 [142–162]mm higher than the aortic length estimate (399 \pm 32 mm). Corresponding PWVs estimated with Sphygmocor and MRI were 9.87 \pm 2.1 and 7.63 \pm 1.9 (P < 0.001) m/s, respectively. PWV differences between Sphygmocor and MRI decreased to 0.50 (0.13–0.86)m/s when Sphygmocor PWV was calculated using the MRI path length.

Conclusion: In these older women, the PWV difference between Sphygmocor and MRI is reduced when MRI length estimates are used. The difference between PWV measured by Sphygmocor and MRI is in part due to the accuracy of distance measurements.

P131

UTERINE ARTERIES EVALUATION DURING PREGNANCY: MODELING AND COMPUTATIONAL FLUID DYNAMICS CALCULATIONS

Andreia Serrano $^{1,2},$ Vanessa Cunha 3, Jorge Teixeira 4, Maria Pires 5, João O'Neill 5, Valentina Vassilenko 3

¹LIBPhys — Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics, Faculty of Science and Technology, New University of Lisbon, Caparica, Portugal

²NMT, S. A., Madan Park Building, Rua dos Inventores, Caparica, Portugal ³Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte da Caparica, 2829-516, Caparica, Portugal

⁴UNIDEMI, Departamento de Engenharia Mecânica e Industrial, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516, Caparica, Portugal

⁵Anatomy Department, Nova Medical School, New University of Lisbon, Lisboa, Portugal

Preeclampsia (PE) affects pregnancy, being one of the main causes of prenatal maternal mortality and morbidity (1). Recent studies show that PE is characterized by a significant reduction on maternal cardiac output and increased peripheral resistance. However, studies on the maternal hemodynamic adaptation during PE and the available information about central maternal hemodynamics are scarce. Our purpose is to develop a computational model to obtain relevant hemodynamic parameters of the maternal circulation, formed by the common iliac (CI), the internal (II) and the external iliac (EI) and the uterine arteries (UA). Model construction requires many approximations and generalizations to optimize numerical calculation of hemodynamic parameters by Computational Fluid Dynamics (CFD), however this is the best representation of maternal circulatory system. Four different models were created to simulate non-pregnant women and 21, 30 and 36 weeks of pregnancy (2). Numerical simulations performed by ANSYS®-Fluent software correlate blood flow, velocity and arterial pressure, with the variation of uterine morphological data. Calculated flow values on CI and UA to different geometries represent the evolution of arterial system during pregnancy. As the UA suffers higher geometrical transformations during pregnancy, there are a greater increase on blood velocity; blood velocity on the El increases, remaining almost constant in the Cl arteries. The growth on blood flow due to pregnancy development is associated to an augmentation on the arteries' diameter, which allows the maintenance of blood pressure on UA. This model is suitable to compare wall shear, velocity or flow values associated to PE, measured in clinical context.

References

1. Witlin AG, Sibai BM. Hypertension in pregnancy: current concepts of preeclampsia. Annu Rev Med. 1997;

2. Palmer SM. Quantitative Estimation of Human Uterine Artery Blood Flow and Pelvic Blood Flow Redistribuition in Pregnancy. he American College of Obstetrics and Gynecologists; 1992.

P132

CONTINUOUS MEASUREMENTS OF CENTRAL BLOOD PRESSURE DURING MENTAL STRESS MONITORING

Valentina Vassilenko $^{\rm 1,2}$, Andreia Serrano $^{\rm 1,2}$, Paulo Bonifacio $^{\rm 1,2}$, Peter Roth $^{\rm 3}$, Viktor Fetter $^{\rm 3}$

¹LIBPhys - Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics, Faculdade de Ciência e Tecnologias, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal ²NMT, S. A., Edifício Madan Parque, Rua dos Inventores, Caparica, Portugal
³Space Systems - Airbus Defence and Space Gmb, Immenstaad, Germany

Nowadays employment world is increasingly shifting towards service-related labour, changing focus from physiological to psychological loads for workers. Thus, a deeper psychological stress understanding arises, not only for jobs within extreme conditions (as astronauts or pilots) but also for regular jobs with high emphasis on mental stressors. With the intend of developing a method and technology able to detect psychological stress we perform this pilot laboratory study in 14 male volunteers under stress and relax situations. As a stressor and the relaxer were used a standardized cognitive Paced Auditory Serial Addition Test (PASAT) and a relaxing video, respectively. Galvanic Skin Response (GSR) and Heart Rate (HR) were continuously measured as golden standard techniques to indicate physiological stress levels. Before each stimulus intervention a Braquial Blood Pressure were measured by standard Omron M6 apparatus. A continuous monitoring of Central Aortic Pressure (CAP) were assessed by non-invasive small WiFi sensors and equipment, developed by NMT, S.A., which allowed on-line detection and long-term effect of stress evaluation. HR and GSR measurements showed high variations under stressor application, proving physiological stress among volunteers and validating PASAT suitability. From analysis of obtained CAP data were found the good correlation with HR and GSR measurements in both, stress and relax sections. In addition of being a highly innovative study on mental stress detection, it is obvious the necessity of increase study population in future similar studies in lab and/or in the field condition.

P134

A COMPUTATIONAL INVESTIGATION OF CONFOUNDING FACTORS AFFECTING FLOW MEDIATED DILATION: TOWARDS IMPROVED ENDOTHELIAL FUNCTION ASSESSMENT

Weiwei Jin¹, Phil Chowienczyk², Jordi Alastruey³

¹Department of Biomedical Engineering, King's College London, London, UK ²King's College London British Heart Foundation Centre, Department of Clinical Pharmacology, King's College London, London, United Kingdom ³Department of Biomedical Engineering, King's College London, London, United Kingdom

Objective and motivation: Endothelial dysfunction is associated with cardiovascular diseases. Flow mediated dilation (FMD), assesses the endothelial function by measuring the brachial artery vasodilation following deflation of a sphygmomanometer cuff around the forearm. Vasodilation is assumed to be due to an increase in wall shear stress (WSS) only. However, there is evidence that the vasodilation may be affected by other confounding factors1. We aim to investigate the effects of confounding factors on the results of FMD. Methods: A dynamic simulation of FMD was carried out using a one-dimensional haemodynamic solver of blood flow in the arm arterial vasculature (Fig. 1a) 2. Haemodynamics during cuff deflation was simulated by prescribing a decrease in peripheral resistance (Fig. 1b) in a novel mathematical model which dynamically couples increasing WSS (Fig. 1c) to decreasing arterial wall Young's modulus (Fig. 1d), taking into account endothelial function. Results: Our results show that the initial increase in flow velocity (Fig. 1e) is caused by the prescribed decrease in peripheral resistance and leads to an initial pressure drop affecting the FMD value. WSS induces a drop in Young's modulus leading to vasodilation (Fig. 1f). In addition, for the same prescribed endothelial function (relating WSS to Young's modulus variation) and decreased peripheral resistance, FMD increases with decreasing arterial stiffness (3.17% vs 5.31% vs 8.56% (Fig. 1f)). ConclusionOur numerical model successfully described FMD haemodynamics and highlighted one of the important confounding factors of FMD values: arterial stiffness. We are currently investigating other factors and ways of correcting those factors.

P135

SYSTEMIC CARDIOVASCULAR INPUTS IN MODELS ESTIMATING INTRACRANIAL PRESSURE MAGNITUDE AND WAVEFORM

Julio A. Lara-Hernández, Isabella Tan, Mark Butlin, Alberto P. Avolio Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia

Background: Monitoring Intracranial Pressure (ICP) is key for appropriate clinical treatment of patients with conditions potentially causing raised ICP. The adequacy of using Heart Rate (HR), aortic Blood Pressure (aBP) and carotid Blood Flow (cBF) to estimate ICP magnitude (pulse and mean)

and waveform is investigated as an alternative means to invasive $\ensuremath{\mathsf{ICP}}$ measurement.

Methods: ICP (sequentially raised from resting ICP to 30–40 mmHg with infusions of artificial intracranial fluid), aBP (lowered with sodium nitroprusside and raised with phenylephrine, 30 μ g/kg/min, across a physiological range), HR (paced at 400 and 500 bpm), and cBF were measured in 11 anaesthetised Sprague Dawley rats. Potential cardiovascular predictors of ICP magnitude were assessed by stepwise mixed-model regression. Two transfer function models were constructed to estimate the ICP waveform from aBP or cBF waveforms.

Results: Systolic, mean and diastolic aBP as well as peak and minimum cBF had significant predictive value for mean ICP (p < 0.001, $R^2 = 0.25$). HR (p < 0.05), systolic and mean aBP (p < 0.001), peak (p < 0.001), mean (p < 0.05) and minimum (p < 0.01) cBF had significant value for pulse ICP ($R^2 = 0.35$). The transfer function models showed potential to reproduce the ICP waveform (Root Mean Square Error (RMSE) ≤ 4 mmHg), being more accurate for mean aBP above 100 mmHg and mean ICP below 20 mmHg (RMSE ≤ 0.5 mmHg).

Conclusions:The models developed from the comprehensive rat experiment demonstrated that systemic cardiovascular measures have predictive value in estimating the ICP magnitude and waveform, but other inputs may be necessary to improve accuracy in estimating ICP across the full physiological range.

P136

SIMULATING MYOCARDIAL OXYGEN BALANCE CHANGES DUE TO ANTI-HYPERTENSIVE DRUGS

Andrea Guala $^{\rm 1},$ Dario Leone $^{\rm 2},$ Francesco Tosello $^{\rm 2},$ Alberto Milan $^{\rm 2},$ Luca Ridolfi $^{\rm 3}$

¹Hospital Vall d'Hebron, Department of Cardiology, VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain

²Department of Medical Sciences, Hypertension Unit, University of Torino, Turin, Italy

³DIATI, Politecnico di Torino, Turin, Italy

Background: Hypertension clinical treatment largely relies on different drugs. Some of these drugs are thought to exhibit specific protective functions in addition to those resulting from blood pressure reduction per se. Through a validated multiscale mathematical model of the cardiovascular system, we studied the impact of commonly-used antihypertensive drugs on myocardial oxygen supply—consumption balance, which plays a crucial role in type 2 myocardial infarction.

Methods: Forty-two wash-out hypertensive patients were included in this study. Patients' demographics, heart rate, brachial pressure, Left Ventricular (LV) volumes and carotid-femoral pulse wave velocity were used to set to patient specific condition a largely accepted benchmark data set describing generic healthy subjects. Starting from literature data, drugs effects were modeled by means of six coefficients, describing LV function, heart rate, peripheral resistances and arterial stiffness. These drug-specific sextuplets were used to multiply some parameters of each patient model to simulate drugs impact.

Results: Our results ascribed the well-known major cardioprotective efficiency of β blockers to a positive change of myocardial oxygen balance. This was due to the concomitant reduction in LV work and increase in coronary flow. Similarly, RAAS blockers induced several positive changes, but to a reduced extent. In contrast, calcium channel blockers seem to induce some potentially negative effects on myocardial oxygen balance.

Conclusions: Patient specific multiscale mathematical model is able to reproduce clinically-relevant changes in coronary hemodynamics and ventricular function driven by anti-hypertensive drugs. Further studies are needed to evaluate eventual clinical usefulness of in-silico modeling of anti-hypertensive drugs.

P137

ESTIMATING LEFT VENTRICULAR ELASTANCE FROM NONINVASIVE AORTIC FLOW AND BRACHIAL PRESSURE MEASUREMENTS

Stamatia Pagoulatou, Nikolaos Stergiopulos EPFL, Lausanne, Switzerland

Background and Aim: Left Ventricular (LV) End-systolic elastance (Ees) serves as a major determinant of cardiac systolic contractility. Traditional Methods: to evaluate the ventricular mechanics directly from measurements require intraventricular pressure and volume recordings during an acute preload