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Abstract Clinical exercise stress testing is a common medical test performed in cardiology and
exercise physiology clinics the world over. Measurement of blood pressure (BP) during testing is
mandated. Whilst systolic BP should normally rise with incremental exercise, and diastolic BP re-
mains relatively stable, abnormal responsescanoccur. LowBPor ‘exercisehypotension’ isa known
signal of underlying cardiovascular disease and sign of poor prognosis. On the other hand, obser-
vational evidence suggests an exaggerated BP response is also associatedwith heightened cardio-
vascular disease risk. Historically, research has focused on the BP response to peak or maximum
exercise intensities. However, exaggerated BP during submaximal exercise (light-to-moderate in-
tensity) may expose the presence of high BP otherwise not detected by traditional resting mea-
surement in the clinic. Exaggerated exercise BP is related to subclinical cardiovascular disease
risk markers such as raised arterial stiffness and impaired cardiac structure and function. The
mechanisms underlying such associations are complex, but physiological insight has been gained
fromstudyingchanges inarterial haemodynamics in response todynamicexercise. Similarly, there
are several knownmodifiers of the exercise BP response, including age, disease status and aerobic
capacity. An area of continued focus is to establish if modifiers, such as aerobic capacity, also
modify associations betweenexercise BPandclinical outcomes throughout the life-course. Future
work is also directed towards filling a crucial evidence gap, providing population-based thresholds
of exercise BP that are associatedwith acute and longer-termoutcomes. This should pave theway
for pragmatic research aimed towards enhancing the clinical use of exercise BP.
ª 2017 Association for Research into Arterial Structure and Physiology. Published by Elsevier B.V.
All rights reserved.
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Introduction

Clinical exercise stress testing is frequently performed in
cardiology and exercise physiology clinics the world over.
This incremental or ‘graded’ form of exercise testing is
generally carried out to establish presence of exercise
induced myocardial ischaemia and/or arrhythmia, or for
the assessment of aerobic and functional capacity. The
measurement of blood pressure (BP) before, during and in
recovery from exercise forms a mandatory requirement of
each test.1,2 Irrespective of exercise test mode (which may
take the form of a treadmill, cycle, step or walk protocol),
systolic BP should normally rise with incremental exercise,
theoretically reaching maximal value towards peak in-
tensity.3 Diastolic BP should remain relatively stable, likely
reducing at higher exercise intensities in response to
reduction in systematic vascular resistance. Nonetheless,
irrespective of BP status at rest, abnormal exercise BP re-
sponses can occur. Several lines of evidence suggest that
abnormal exercise BP holds clinical relevance in the pre-
diction of cardiovascular risk, as well as revealing the
presence of high BP otherwise missed by traditional resting
measures.4 The aim of this paper was to summarise (our)
recent work underlying the clinical importance of
(abnormal) exercise BP (with a focus on exercise hyper-
tension); whilst describing current and future research
endeavours that will enhance clinical use.

The clinical importance of abnormal exercise
BP

Exercise hypotension

Clinical exercise guidelines define exercise hypotension as a
drop in systolic BP below pre-testing value, or an increase
with subsequent decrease in systolic BP of >10 mmHg with
increasing exercise intensity.1,2 A relatively common con-
dition in individuals referred for clinical exercise testing
(prevalence estimates > 6%),5 exercise hypotension is
known to be associated with presence of underlying cardiac
disease (such as left ventricular dysfunction, ischaemic
heart disease and aortic outflow obstructions). Thus, it has
been incorporated into exercise testing guidelines as an
absolute indication to terminate a clinical test on safety
grounds. The clinical importance of exercise hypotension
may not only be acutely relevant, but may signify future
cardiovascular risk. Indeed, we recently undertook a sys-
tematic review and meta-analysis and found that a hypo-
tensive response to clinical exercise stress testing predicts
longer-term (average follow-up of 4.4 years) fatal and non-
fatal cardiovascular events and all-cause mortality.6 Of
particular note, data indicated the prognostic significance
of exercise hypotension irrespective of disease status,
modality of exercise testing (treadmill or cycle protocols),
exercise intensity, or definition of exercise hypotension.6

More recently, data from the Henry Ford Exercise Testing
(FIT) Project indicated that a reduction in systolic BP during
exercise testing was associated with elevated incidence of
cardiovascular events (myocardial infarction) and all-cause
mortality.7 This association held following adjustment for

important cardiovascular risk factors (including aerobic
capacity).

Exercise hypertension

The clinical importance of exaggerated BP responses to
clinical exercise testing has been long-debated. Precise
definitions of exercise hypertension are unavailable,
although several large studies have indicated that irre-
spective of normal BP at rest some individuals will experi-
ence an abnormal increase in BP (more likely for systolic
BP) which at peak exercise intensity is associated with
adverse cardiovascular outcomes.8,9 We conducted a sys-
tematic review meta-analysis compiling all available data
on subjects without a history of hypertension (in-clinic
BP � 140/90 mmHg) and cardiovascular disease.10 In data
from 46,314 subjects followed for 15 � 4 years, we found
that independent of age, sex, resting BP and multiple
traditional cardiovascular risk factors, that exaggerated BP
during submaximal intensity exercise was associated with a
36% increased cardiovascular event and mortality rate.
Moreover, each 10 mmHg increase in exercise systolic BP at
submaximal intensity was associated with a 4% increased
annual event rate.10 Despite expectation, the BP response
to peak intensity exercise was not predictive of outcome.
Thus, within otherwise healthy individuals, the signal for
heightened risk may be stronger for exercise BP recorded at
a submaximal intensity when measurements may be more
practically feasible and reliable. Nonetheless, whilst some
attempt at defining exercise hypertension at submaximal
exercise workloads (submaximal exercise systolic BP in the
range of 150e180 mmHg) has been made from small
selected study samples,11e14 more definitive conclusions on
thresholds are required in order to be able to fully eluci-
date its prognostic importance.

Exercise hypertension is likely a precursor to future
development of established hypertension, which may un-
derlie its aforementioned prognostic value. Indeed, multi-
ple longitudinal studies have indicated that exercise
hypertension in those with apparently normal BP (in-clinic
BP � 140/90 mmHg) predicts incident hypertension.13,15e18

To consolidate this evidence, we recently integrated data
from 23,207 normotensive subjects followed for an average
5.3 � 2.1 years, in the form of a meta-analysis.19 Our pri-
mary finding was that exercise hypertension independently
predicted future development of hypertension, irre-
spective of exercise mode (i.e. treadmill, step or cycle) or
intensity, and independently of resting BP.19

One of the limitations of studies included in our meta-
analysiswas that in-clinicmeasures of BPwere used to define
those with normal BP at baseline, and the outcome of inci-
dent hypertension at follow-up. It is well known that true BP
control cannot be confirmed in the absence of an out-of-
clinic (ambulatory or home monitoring) BP, because white
coat hypertension (erroneously high BP in the clinic) or
masked hypertension (erroneously normal BP in the clinic)
cannot be ruled out. Thus, risk related to the exercise BP
response could have been potentially over- or under-
estimated in our meta-analysis. We aimed to address the
magnitude of this limitation in a study of non-selected in-
dividuals undergoing clinical exercise stress testing. One
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hundred individuals free of coronary artery disease
completed a standard clinical Bruce treadmill exercise stress
test protocol, followed by 24-h ambulatory BP monitoring.
The exercise systolic BP response to early stress test stages
(light-to-moderate exercise intensity) revealed the pres-
ence of hypertension defined according to ambulatory BP
guidelines.12 The key finding was that 75% of individuals with
a stage 1 (light intensity) exercise systolic BP � 150 mmHg
had hypertension defined by 24-h ambulatory systolic
BP � 130 mmHg. This same threshold of exercise systolic
BP � 150 mmHg (at stage 1 of the test) predicted the pres-
ence of hypertension confirmed by ambulatory monitoring,
independent of age, sex and in-clinic resting BP.12

It has been hypothesised that a hypertensive response to
light-to-moderate intensity exercise may reveal the pres-
ence of hypertension missed by in-clinic (resting) BP.
Indeed, exercise of a light-to-moderate intensity reflects
the level of activity undertaken during daily life, and thus
may be more indicative of true BP load than a single BP
measure at rest.20 Our work and that of others has shown a
high proportion of individuals with exercise hypertension
also have masked hypertension,11,21,22 a condition defined
as normal in-clinic BP but raised out-of-clinic BP.23 Those
with masked hypertension have a greater rise in BP during
exercise, and these individuals are at increased cardiovas-
cular risk, as indicated by associations with markers of
organ damage (including raised left ventricular mass) and
cardiovascular events and mortality.24 Thus, a hypertensive
response to exercise of a light-to-moderate intensity may
be a useful signal to clinicians of likely increased risk
related to BP, otherwise undetected at rest. Indeed, ex-
ercise hypertension has been added to some consensus
documents as an indication to perform out-of-clinic BP
monitoring to ascertain true BP control.23,25

Whilst the risk related to exercise hypertension is
underscored by associations with high BP, it is also appears
related subclinical cardiovascular disease, which is ex-
pected if indeed exercise hypertension is synonymous with
chronic hypertension. Raised exercise systolic BP is associ-
ated with altered cardiac structure and function (including
raised left ventricular mass and systolic dysfunction).22,26,27

Others have also found independent associations between
exercise BP and arterial structure and function (including
aortic stiffness and endothelial dysfunction),28 as well as
metabolic irregularities including glucose control and dys-
lipidaemia.29e31 The majority of studies have identified
links to subclinical cardiovascular disease risk markers in
older-middle aged adults. However, we recently studied a
large cohort of adolescents (17-year old boys and girls) and
found post-exercise (submaximal intensity) systolic BP to
be positively associated with raised left-ventricular mass
and aortic stiffness, independent of body composition and
resting BP (data presently unpublished). Thus, it appears
that even in earlier life, abnormal exercise BP may allude
to heightened BP-related cardiovascular risk.

If risk associated with exercise hypertension is apparent
from early life, then strategies are needed to prevent the
development of the condition and to intervene to reduce the
associated cardiovascular risk. Aerobic and strength training
programs lower submaximal intensity exercise systolic BP in
those with untreated hypertension and prehypertension.32

However, the effect of lifestyle modifications including

exercise on exercise BP in those with a more advanced car-
diovascular disease is unknown. We undertook a post-hoc
analysis of individuals with type 2 diabetes (with a high
prevalence of exercise hypertension) who participated in a
randomised trial of exercise and lifestyle intervention to
determine whether it could improve exercise BP compared
to usual care.33 Whilst absolute exercise BP values were not
improved following the 12-month intervention, we demon-
strated that in those without exercise hypertension at
baseline, exercise and lifestyle diminished the rate of ex-
ercise hypertension development by comparison to usual
care. Perhaps more importantly, we showed that in those
with established exercise hypertension at baseline, exercise
and lifestyle intervention was not sufficient to reverse the
condition.33 Thus, exercise hypertension may represent a
more advanced cardiovascular condition that requires a
more targeted approach to improve among this population
and in the short term.

Factors influencing exercise blood pressure

Several factors may influence the BP response to clinical
exercise testing. Peak systolic and diastolic BP, as well the
difference from resting values have been shown higher in
men compared with women, and increased with age in both
sexes.3 Disease status may also influence BP response, with
those at already increased cardiovascular risk (e.g. type 2
diabetes, masked hypertension) having substantially
greater prevalence of exercise hypertension,11,34 and those
with established coronary artery disease having greater
prevalence of exercise hypotension.5 The specific mecha-
nisms underlying (abnormal) exercise BP are multifacto-
rial.35 Fundamentally, neural cardiovascular control
(sympatric drive) will modify cardiac inotropy and vascular
function during exercise, subsequently influencing exercise
haemodynamics. Whilst it is beyond the scope of this paper
to detail all these factors, the primary (simple) mechanism
driving exercise BP can be viewed as a balance (imbalance)
between cardiac output and systemic vascular resistance.
Restriction to the level of systemic vasodilation in response
to dynamic exercise may increase systolic BP (i.e. failure
for sufficient vascular ‘run-off’). On the other hand, an
inadequate increase to cardiac output to meet the meta-
bolic demands of exercise, or excessive systemic vasodila-
tion may cause a drop in systolic BP.

Fundamental changes to ‘output’ and ‘resistance’ (as
described) during exercise will affect arterial wave travel
and modify the exercise BP waveform morphology. Using
the novel approach of wave intensity analysis applied to
invasively acquired ascending aortic pressure and flow ve-
locity waveforms (captured at the time of coronary cath-
eterisation), we described the influence of pressure wave
travel in the generation of BP during dynamic aerobic ex-
ercise.36 Despite traditional expectation for an increase in
reflected wave intensity contributing to aortic BP
augmentation, our data indicated minimal change of wave
reflection in response to exercise. Indeed, the over-
whelming driver of exercise aortic BP was elevation in in-
tensity of the forward compression wave (indicative of
increased left ventricular ejection) and forward decom-
pression wave (indicative of enhanced late systolic
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deceleration of left ventricular ejection).36 We also per-
formed pressure wave separation using the reservoir-excess
pressure paradigm. In the first application of this model to
BP waveforms captured during exercise, our results indi-
cated that whilst reservoir pressure remained relatively
similar from rest to exercise, the aortic BP increase was
largely attributable to an increased excess (or wave-
related) pressure component. This was an important
finding, and may underlie some of the prognostic value of
exercise hypertension,10 since elevations to excess pressure
have been shown to be a strong and independent (of
traditional hypertension-related risk factors) predictor of
cardiovascular events and mortality.37

Evidence gaps and future directions

Whilst the clinical importance of exercise BP is apparent
from our (and others) observational research, a crucial ev-
idence gap in the field is the absence of thresholds of ex-
ercise BP associated with outcomes. In the absence of such
thresholds, clinicians supervising exercise stress testing are
unable to determine the true level of risk associated with a
given (abnormal) BP response, and therefore creates diffi-
culty in making definitive clinical decisions from exercise BP
results. We are in the early stages of a large collaborative
study (the EXERcise stress Test collaboratION; the EXERTION
study) aimed at creating population-based thresholds of
exercise BP, via construction of a nationwide (Australian)
clinical exercise stress testing database linked to clinical
outcomes and death. Analysis of a small section of this data
(n Z 717 individuals without a prior history of cardiovas-
cular disease) using change-point analysis indicates that a
submaximal (stage 2 Bruce protocol) exercise systolic BP
beyond a threshold of 170 mmHg is associated with an
increased rate of cardiovascular related hospital admis-
sions. Nonetheless, this is a preliminary analysis and results
will need to be confirmed within the full study cohort, a
target of >200,000. Creation of such a large database will
enable us to not only determine long-term risks associated
with abnormal exercise BP, but also provide much needed
evidence for thresholds outlined in exercise testing guide-
lines as indications to terminate testing. Creation of exer-
cise BP thresholds will also enable pragmatic research
studies aimed at establishing how incorporation of exercise
BP into decision making within clinical practice may improve
the detection and management pathways related to high BP.

Aerobic capacity is a strong determinant of exercise
BP.38 Nonetheless, the influence of aerobic capacity on the
exercise BP response (in particular at submaximal in-
tensities), and subsequent association with adverse out-
comes (including hypertension and cardiovascular events
and mortality) remains to be fully elucidated. Several
studies are underway to determine how aerobic capacity
and indeed physical activity patterns across the life course
may alter exercise BP, both concurrently and in the future.

Summary and conclusion

Our research (and that of others) suggests abnormal exer-
cise BP has clinical importance beyond resting BP. Both
exercise hypotension and hypertension are associated with

adverse cardiovascular outcomes including events and
mortality. Exercise hypertension predicts future develop-
ment of hypertension, whilst revealing the presence of
underlying high BP missed by traditional in-clinic BP at rest.
Several important evidence gaps remain to be filled;
including the development of population-based clinical
thresholds of exercise BP associated with outcomes. Whilst
this will enhance the clinical relevance of exercise BP in the
future, abnormal exercise BP should still act as a warning
signal of likely increased cardiovascular risk related to BP
that warrants follow-up care to ascertain true BP control,
and/or lifestyle intervention to lower risk.
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