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hypertension, with investigators, however, not reaching a consensus on the
relative importance of each wave component (1,2).
Objective: The aim of the current investigation was to examine the wave
profile over time after developing an age-adapted, mathematical, one-
dimensional model of the cardiovascular system.
Methods: Our state-of-the-art 1-D model (3,4) was extended to include tur-
bulence and inertial effects of the flow exiting the left ventricle. Literature
data on the age-associated changes in arterial stiffness, peripheral resis-
tance and cardiac contractility were gathered and used as an input for the
simulation.
Results: The predicted evolution of pressure and augmentation index with
age followed accurately the curves obtained in a number of large-scale clin-
ical studies. Analysis of the relative contribution of the forward and back-
ward wave components showed that the forward wave becomes the major
determinant of the increase in central and peripheral SBP and PP with
advancing age.
Conclusions: The 1-D model of the ageing tree and heart captures faithfully
and with great accuracy the central pressure evolution with ageing. The
stiffening of the proximal aorta and the resulting augmentation of the for-
ward pressure wave is the major contributor of the systolic pressure
augmentation with age.
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Purpose: Hypertension, the single biggest killer worldwide1, arises mainly as
a result of an increase in central pulse pressure (PP)2, yet haemodynamic ba-
sis of that increase is still disputed. We examined the ability of a simple
“reduced” model comprising a proximal characteristic impedance linked
to a Windkessel element to accurately predict PP from aortic blood flow
and applied the model to examine PP dependence on cardiac and vascular
properties.
Method: PP obtained from the model was compared with theoretical values
obtained in silico and in vivo. Theoretical values were obtained using a
distributed multi-segment model in a population of “virtual” subjects
(nZ 3,095) in which cardiovascular properties were varied over the patho-
physiological range. In vivo measurements were in normotensive subject
(nZ 13) during modulation of physiology with vasoactive drugs with diver-
gent actions on cardiac and cascular properties and in hypertensive subjects
(nZ 156).

Results: PP derived from the model agreed with theoretical values (mean
difference SD, �0.09� 1.96 mmHg) and with measured values
(�1.95� 3.74 and �1.18� 3.67mmHg for normotensive and hypertensive
subjects respectively). Parameters extracted from the model agreed closely
with theoretical and measured physical properties. PP was seen to be deter-
mined mainly by total arterial compliance (inversely associated with arterial
stiffness) and ventricular dynamics: the volume of blood ejected up to time
of pulse pressure and the rate of ventricular ejection up to this point.
Conclusion: Increased flow and/or volume accounted for 20.1 mmHg (52%)
of the 39.0 mmHg difference in pulse pressure between the upper and lower
tertiles of the hypertensive subjects.
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Background: Reservoir pressure is typically estimated from the pressure
waveform information only. Comparability with estimates made using pres-
sure and flow depend on assumptions, e.g. a proportional relationship be-
tween excess pressure and flow [1]. In this study, we compared (i) results
using flow and pressure versus pressure-only at the radial artery, and (ii)
two different algorithms used in the literature for pressure- only analysis.
Methods: Reservoir pressure separations were performed on 95 hypertensive
individuals where radial pressure and flow velocity waveform measurements
were available [2]. Algorithm (F) used flow and pressure information [3]. Al-
gorithms (P1) and (P2) refer to the two different pressure-only implementa-
tions as used in [4, 5], and [1, 6], respectively. Reservoir curves
characterized by physiologically implausible parameters, i.e. a rate constant
b< 0 or an asymptotic pressure PN< 0, were discarded, leaving 63 subjects
with valid reservoir pressure data.
Results: Estimated reservoir parameters are shown in Table 1. Algorithm (F)
showed statistically significant differences in most of the parameters
compared to (P1) and (P2), although, except time constant t and asymptotic
pressure PN, there was a strong correlation between methods. Significant
differences were observed in reservoir pulse pressure and area estimates be-
tween (P1) and (P2) despite their, in general, high correlation.

Table 1. Quantification of reservoir pressures pres obtained by methods (F), (P1) and (P2) at radial artery in the format of mean� standard deviation based
on 63 subjects whereby PP denotes the reservoir pulse pressure, Ap the area of reservoir pressure above diastolic blood pressure, t the time constant
describing the diastolic pressure decay, PN the asymptotic blood pressure and a,bZ 1/t the rate constants. Peripheral (area) resistance and compliance,
i.e. R and C, were estimated from the rate constants a and b for (P1) and (P2) using flow information. The correlation coefficient r was computed between
relevant methods. The statistical significance of the differences between methods was based on a paired t-test with * indicating p< 0.05.

Radial artery pres (F) pres (P1) pres (P2) r(F,P1) r(F,P2) r(P1,P2)

PP [mmHg] 41.5� 10.0 36.3� 7.2 35.7� 7.0 0.82* 0.82* 0.96*
Ap [mmHg s] 17.5� 4.3 15.6� 3.7 15.5� 3.7 0.94* 0.94* 1.00*
t [S] 0.3� 0.1 0.6� 0.4 0.6� 0.3 0.36* 0.42* 0.88
PN [mmHg] 65.7� 10.3 63.9� 15.2 64.8� 12.6 0.45 0.53 0.79
a [1/s] e 8.1� 5.2 7.4� 2.7 e e 0.93
b [1/s] e 2.2� 1.1 2.1� 0.8 e e 0.84
R [mmHg s/m] 419.0� 188.8 453.7� 348.2 436.7� 302.6 0.68 0.75 0.92
C [mm/mmHg] 0.8� 0.3 1.7� 1.0 1.7� 1.0 0.70* 0.70* 1.00
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