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Abstract Previous studies havedemonstrated that the complianceof peripheral artery changes
with arm movement. This study aimed to quantify the bilateral difference in radial artery pulse
morphology with one-side arm movement. Twenty-four healthy subjects were recruited. Radial
artery pulses were synchronously recorded from both arms, with one arm (left or right) at five
different positions (90�, 45�, 0�, �45� and �90�) and the other arm at horizontal level (0�) as
reference. Two types of indices of arterial pulse morphology were derived from the normalized
arterial pulse signals: thewaveformwidth corresponding to the 50%, 60% and 70%pulse amplitude
(W50, W60, W70) and the total area of normalized pulse waveform (Apulse). Nomatter whether the
moving arm was left or right arm, when compared with the other side reference arm, all the
waveformwidths decreasedwith armmoving from90�, 45�, 0�,�45�, and�90�. The bilateral dif-
ferenceofW50,W60 andW70with themovingarm (either left or right) at 90�, 45� were significantly
positive (both p< 0.01) and significantly negative at�90� (both p< 0.05). Meanwhile, nomatter
whether themoving arm is left or right, Apulse decreasedwith armmoving from90�, 45�, 0�,�45�,
and�90�. The bilateral difference of Apulse with the leftmoving armwere significantly positive at
45�, 90� (both p< 0.05). Meanwhile, the bilateral difference of Apulse from the moving right arm
was significantly positive at 90� and significantly negative at�45� and�90� (all p< 0.05). In sum-
mary, this study quantified the bilateral arterial pulse morphology between arteries with
different compliances induced by a simple arm positioning procedure.
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Introduction

Arteries play an important role in cardiovascular physiology
and pathophysiology. Arterial properties can change with
different physiological and clinical conditions,1e4 including
aging,5,6 hypertension,3 diabetes,4 heart failure1,7 drug
treatment,8 smoking,9 alcohol10 and emotion states.11 It is
clinically important to characterize and quantify the elastic
properties of arteries. Various non-invasive techniques
have been used to indirectly quantify the properties of
arteries. The most commonly used technique measures
pulse wave velocity (PWV) or pulse transit time (PTT).12e14

Analysis of pulse waveform shape characteristics has also
been accepted as another non-invasive technique. The
difference in finger pulse amplitude changes with changing
pressure have been explored in patients with cardiovascu-
lar diseases.15 The carotid waveform morphology has also
been used to investigate the difference between the pe-
ripheral and central arterial pressure pulses.16

Recently, Zheng and Murray12,17 reported a simple
technique through arm moving to induce the change of
peripheral arterial volume distensibility and concluded that
the peripheral arteries are more compliant with the arm
positioned above horizontal level in comparison with the
arm at the horizontal level.18 To the best of our knowledge,
the arterial pulse morphology change with arm moving has
not been quantified. Therefore, the first aim of this study
was to quantify the radial pulse morphology changes for
arteries with different compliances induced by positioning
the arm at different positions. For healthy subjects, the
bilateral radial pulse morphology should be almost the
same if both arms are positioned at the same height levels.
By positioning one arm at horizontal level as reference and
the other arm at a different height, a bilateral pulse
morphology difference could be introduced, and its
changes with arm positions could be quantified. Thus, the
bilateral pulse morphology difference from the synchro-
nously recorded bilateral radial pulses, i.e., between the
moving arm (at five different positions 90�, 45�, 0�, �45�,
and �90� to the horizontal level) and the reference arm (at
horizontal position 0�), would be quantified.

Methods

Subjects

Twenty-four healthy subjects (14 male and 10 female) aged
between 21 and 50 were enrolled in this study. Their basic
clinical information is presented in Table 1. The study
received ethical permission from the local Ethical Commit-
tee of Shandong University in China, and all subjects gave
their written informed consent to participate in this study.

Arterial pulse recording procedure

All the measurements were undertaken in a quiet room at
Shandong University. Each subject was asked to lie down on
a measurement bed for 5 min before the formal arterial
pulse recording to allow cardiovascular stabilization. All the
measurements were operated by the same operator.

For each subject, there were two repeat measurement
sessions with an interval of 20 min. Within each mea-
surement session, two series of five separate recordings
were performed with one arm at five different positions
(90�, 45�, 0�, �45�, and �90� to the horizontal level) and
the other arm at horizontal position (0�) as the reference
arm, and then vice versa, i.e., firstly, the right arm was
regarded as the ‘moving arm’ by positioning at five posi-
tions and the left arm as the ‘reference arm’; then the left
arm was regarded as the ‘moving arm’ with recordings at
five positions and the right arm as the ‘reference arm’.
Figure 1(A) shows the schematic diagram of the mea-
surement procedure and a picture of the set-up. In total,
20 arterial pulse recordings were obtained from each
subject (from 2 repeat session, 5 recordings with the left
arm as moving arm and 5 recordings with the right arm as
the moving arm).

During each recording, all subjects remained supine
position on a measurement bed. Piezoelectric sensors
(manufactured by Hefei-Huake Electronic Technology
Research Institute, China) were placed in the radial ar-
teries of both arms and were fixed using two same size
bandages (as shown in Fig. 1(B)). When arterial pulse sig-
nals were stalely and clearly shown on the display screen,
the moving arm was positioned at the measurement height
by a mechanical support to avoid the movement and the
reference arm was constantly kept at horizontal position.
The radial artery pulses from both two side arms were
simultaneously recorded for 40 s with a sampling rate of
500 Hz.

At the beginning and end of each study, systolic and
diastolic blood pressures (SBP and DBP) were measured
using a clinically validated BP monitor (102, Dongyue
healthcare, Shandong, China) with both arms at the hori-
zontal level. Mean arterial pressure (MAP) was calculated
used the equation: MAP Z DBP þ 0.4(SBP � DBP).20

Arterial pulse processing

For each recording, the feet of the recorded radial artery
pulses were detected by an open-source algorithm21,22 and
then manually verified. 11 consecutive stable and high

Table 1 Basic clinical information for the 24 subjects
studied.

Variables Value Range (minemax)

Number (M/F) 24 (14/10) e

Age (year) 29 � 8 21e50
Height19 169 � 8 151e183
Weight (kg) 63 � 11 41e87
BMI (kg/m2) 22 � 3 15e27
SBP (mmHg) 115 � 12 93e137
DBP (mmHg) 70 � 10 57e95
MAP (mmHg) 85 � 10 69e107

Value is expressed as number (male/female) or
mean � standard deviation (SD). BMI: body mass index, SBP:
systolic blood pressure, DBP: diastolic blood pressure, MAP:
mean arterial pressure.
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quality beats were chosen by manual. Then 11 separate
beats were extracted respectively between two adjacent
pulse feet. In order to eliminate the effects of changes in
applanation pressure, the pulse waveform is normalized.
Each beat was then normalized with the length of 1000
points and amplitude of 1 (i.e., pulse foot had amplitude of
0 and pulse peak of 1). Normalized mean pulse template
(NMPT) was then constructed by averaging 11 normalized
pulses from each recording. Figure 2 shows the examples of
five NMPTs with the left arm at 90�, 45�, 0�, �45� to �90� to
the horizontal level. For each subject, a total of 40 NMPTs
are obtained, with 20 NMPTs from the moving arm (left or
right) at the five different positions (2 repeat sessions, 2
moving arms, 5 positions), as well as 20 NMPTs from the
reference arm.

Pulse morphology indices and their bilateral
differences

To quantify the pulse morphology changes with the arm at
different positions, two types of indices were defined. One
was the pulse waveform width index, which was defined as
a pulse waveform width corresponding to a certain per-
centage of the pulse amplitude. In this study, three pulse
waveform width indices (W50, W60 and W70) corresponding
to 50%, 60% and 70% of pulse amplitude were considered.
Another index was the total area of the NMPT signal (Apulse).
Figure 3 demonstrates their definitions.

The bilateral waveform width difference and the bilat-
eral total area difference were then calculated between
the moving arm (at five different positions 90�, 45�, 0�,
�45�, and �90� to the horizontal level) and the corre-
sponding reference arm (at horizontal position 0�) to obtain
the bilateral pulse morphology differences.

Data and statistical analysis

The mean and SD values of the obtained indices (Apulse,
W50eW70, and their bilateral differences) were firstly
calculated, separately for each arm at different positions.
The effect of arm position on the bilateral pulse
morphology differences was then tested. A p < 0.05 was
considered statistically significant.

Results

Changes of bilateral difference of W60 with arm
moving

Our results show that the changes of W50, W60 and W70 with
arm moving were similar and there was no significant dif-
ference between these three indices at different arm po-
sitions. To simplify the results, W60 was used to describe the
results in details.

Figure 4(A) and (B) shows overall means and their SDs of
index W60 with the moving arm (left or right) at different
positions (90�, 45�, 0�, �45�, and �90�) and the other arm
at horizontal level as reference. Whether left arm or right
arm, W60 decreased with arm moving from 90�, 45�, 0�,
�45�, and �90�. When compared with the reference arm,
W60 from the moving left arm were significantly larger at
90�, 45� (both p < 0.01) and significantly smaller at 0�, �90�

(both p < 0.05), while not at �45�. Meanwhile, W60 from
the moving right arm were significantly larger at 90�, 45�

(both p < 0.01) and significantly smaller at �90� (p < 0.05),
while not at 0� and �45�. As shown in Fig. 4(C) and (D), for
left arm moving, the mean bilateral W60 differences were
54.9, 34.1, 8.6, �4.2 and �9.0 respectively for the five
positions, and for right arm moving, their corresponding
mean differences were 53.1, 35.4, 2.1, �5.9 and �11.2
respectively.

Changes of bilateral difference of Apulse with arm
moving

Figure 5(A) and (B) shows overall means and their SDs of
index Apulse with the moving arm (left or right) at
different positions (90�, 45�, 0�, �45�, and �90�) and the
other arm at horizontal level as reference. Whether left
arm or right arm, Apulse decreased with arm moving from
90�, 45�, 0�, �45�, and �90�. When compared with the
reference arm, Apulse from the moving left arm were
significantly larger at 90� (p < 0.01) and 45� (p < 0.05),
while not at 0�, �45� and �90�. Meanwhile, Apulse from
the moving right arm was significantly larger at 90�, and
significantly smaller �45� and �90� (both p < 0.05), while

Figure 1 (A) The schematic diagram of the measurement procedure with the right arm (moving arm) at different positions and
the left arm was regarded as ‘reference arm’. (B) the Piezoelectric sensors were placed in the radial arteries of both arms and were
fixed using two same size bandages.
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Figure 2 Examples of five NMPTs from one subject with the left arm at five different positions (90�, 45�, 0�, �45�, and �90� to
the horizontal level). (A) show the five mean NMPTs and (B) shows the detailed three curves (average curve (thick solid line) and the
mean � 2 SDs curves (thin solid and dotted lines respectively)) for each position.
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not at 45� and 0�. As shown in Fig. 5(C) and (D), for left
arm moving, the mean bilateral Apulse differences were
30.3, 11.1, 6.3, �8.1 and �7.0 respectively for the five
positions, and for right arm moving, the corresponding
mean differences were 19, 4, �4, �14 and �13
respectively.

Discussion

This study quantified the bilateral radial artery pulse shape
difference between the moving arm (at five different po-
sitions 90�, 45�, 0�, �45�, and �90� to the horizontal level)
and the reference arm (at horizontal position 0�). These

Figure 3 Definitions of the two indices: pulse waveform width (W60 as an example) and area of pulse waveform (Apulse).

Figure 4 Results of index W60 with the moving arm (A and C for left arm, and B and D for right arm) at five different positions
(90�, 45�, 0�, �45�, and �90� to the horizontal level) and the other side arm at horizontal level as reference: (A) and (B) show the
means and standard deviations (SDs) for index W60 respectively, and (C) and (D) show the bilateral W60 difference between the
moving arm and the reference arm, with the dotted zero line. * means significant statistical difference for p < 0.05 and ** means
significant statistical difference for p < 0.01.
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changes were quantified by two indices (pulse waveform
width and normalized pulse area). Specifically, bilateral
W40, W50, W60 and Apulse difference were quantified, which
decreased gradually and significantly with the arm moving
from 90� to 45�, 0�, �45�, and �90� respectively.

The effect of arm position on heart rate has been
counted in this paper. The means and SDs of heart rate with
arm moving from 90�, 45�, 0�, �45�, and �90� were
66.6 � 5.1, 66.9 � 5.5, 66.8 � 5.2, 66.9 � 5.2 and
67.1 � 5.0 beat/min respectively. Our results were
consistent with results of previous research that the sub-
ject’s heart rate did not change if the subject kept quiet,
whether supine or sitting, with the arm passively positioned
in different positions by a support, in a way that the arm
kept relaxed without muscle tension.23,24

The changes of elastic properties of arteries are asso-
ciated with different physiological and clinical conditions
induced by the change of BP. Previous studies have found
important differences between indirect BP readings when
the arm was placed in different positions.23,25,26 Both SBP
and DBP values were significantly decrease when the arm
were elevated above the level of the right atrium, while
significantly increase when lowered below the level of the
right atrium. Previous studies also studied the influence of

body posture on the indirectly measured BP values when
the arm was placed at the right atrium level and showed
that both SBP and DBP were significantly higher in the su-
pine than those in the sitting position.27 In our current
study, all subjects were asked to keep a supine position and
both arms were constantly kept at heart level at
0� measurement.

With elevating the arm, the effect of gravity induces a
hydrostatic pressure difference. Mitchell et al.28 and Netea
et al.26 reported that the change of BP values taken from
the arm at different levels versus the reference level of the
right atrium could almost completely be explained by the
effect of hydrostatic forces. The change of BP affects the
arterial compliance. Pucci et al. researched the relation-
ship between the arterial compliance and BP with the arm
movement, and reported that, relative to the heart level,
radial augmentation index increased with the arm elevating
and decreased with the arm reducing.23

Zheng and Murray18 reported that the peripheral arteries
compliant with the arm positioned above horizontal level in
comparison with the arm positioned below horizontal level
by measuring PTT difference. However, this conclusion was
from the unilateral finger/ear PPG measurements, not from
the simultaneously recorded bilateral radial artery

Figure 5 Results of index Apulse with the moving arm (A and C for left arm, and B and D for right arm) at five different positions
(90�, 45�, 0�, �45�, and �90� to the horizontal level) and the other side arm at horizontal level as reference: (A) and (B) show the
means and standard deviations (SDs) for index Apulse respectively, and (C) and (D) show the bilateral Apulse difference between the
moving arm and the reference arm, with the dotted zero line. * means significant statistical difference for p < 0.05 and ** means
significant statistical difference for p < 0.01.

6 X. Jiang et al.



measurements as in this study. Different from the published
study by Zheng et al., two pulse waveform morphology
indices, i.e., W60 and Apulse, were used in the current study,
and the effect of arm position on arterial pulse waveform
was investigated from simultaneously recorded bilateral
radial pulse waveforms, avoiding the potential physiolog-
ical variations with time.

Previous studies assessed the change of elastic proper-
ties by measuring PWV, but produced different clinical
conclusions, with no change,29 higher19,30 and lower31 of
PWV results. These conflicting results may be partly due to
the different segments of arteries used for investigation or/
and the methodological difference. Further investigation
on pulse morphology is therefore worthwhile.

If the peripheral arterial system had relatively higher
compliance, a larger proportion of the ejected blood would
expand the peripheral arteries and hence the radial artery
pulse would be expected to have bigger pulse’s area and
width of pulse waveform.5 In the current study, it has been
observed both pulse waveform’s width and area indices
increased with arm raising, where the arteries are more
compliant. Therefore, our results agreed with the pub-
lished expectation and demonstrated that the change of
pulse waveform’s width and area indices could be used to
quantify the change of arterial compliance with a simple
arm positioning procedure.

As the comparison of the two indices W60 and Apulse, it is
observed that W60 was better than Apulse in response to
arterial compliance changes since the effect of arm posi-
tion on W60 was larger as shown in Figs. 4 and 5. In addition,
from Figs. 4 and 5, slight difference was observed between
the left and right arms at 0� level. This result may be partly
due to the physiological structure difference of the left and
right arms.

In conclusion, this study quantified the bilateral differ-
ence of the two pulse morphology indices, i.e., W60 and
Apulse, with the arm at different positions, which indicated
that these indices could be potentially used for quantifying
arterial compliance changes.
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