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Abstract This paper is based on a talk given at the Arterial Hemodynamics: Past, Present and
Future symposium in June 2016. Like the talk it is divided into three different but related
parts. Part 1 describes the calculation of reservoir and excess pressure from clinical pressure
waveforms measured at 5 different aortic sites in 40 patients. The main results are that the
reservoir pressure waveform propagates down the aorta and is effectively constant from the
aortic root to the aortic bifurcation. Part 2 describes a low-frequency asymptotic analysis of
the input impedance of an arterial tree. Neglecting terms of second order, the results show
that the low-frequency component of the pressure waveform is uniform throughout the arte-
rial tree and is delayed by an effective wave travel time that depends on the properties of the
network. The low-frequency pressure waveform shares all of the properties of the reservoir
pressure waveform, but it is premature to say that they are identical. Part 3 describes the
analysis of arterial hemodynamicsusing wave fronts. It shows that every wave front introduced
at the root of the aorta generates an exponentially increasing number of reflected and trans-
mitted waves with exponentially decreasing amplitudes. The long-time response of the arterial
tree can be described by a number of exponentially decaying eigen-modes, each with a
different time constant. The analysis is applied to a 55-artery model of the human circulation
and the modes and their time constants are shown. This theory provides an alternative method
for studying arterial hemodynamics and helps in the interpretation of reservoir and excess
pressure.
ª 2017 Association for Research into Arterial Structure and Physiology. Published by Elsevier
B.V. All rights reserved.

Introduction

This paper is an outline of the talk given at the meeting
Arterial Hemodynamics: Past, Present and Future held at
University College London, 14e15 June 2016. It is not a
transcript of the talk. It does follow the structure of the

talk and is rather more wide ranging than the usual scien-
tific paper, being divided into three slightly disjointed
parts. Part 1 describes some recent work analysing clinical
arterial pressure measurements taken at five different lo-
cations along the aorta using the reservoir-wave model. The
full paper describing this work has recently been submitted
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for publication and so this section takes the form of a brief
outline of the main findings. Part 2 describes some recent
work analysing the low-frequency component of the pres-
sure wave in an arterial tree using impedance methods.
This may seem out of place in a talk dealing with the
reservoir pressure hypothesis, but I hope that its relevance
is clear in the end. Part 3 concerns current work looking at
arterial hemodynamics using wave fronts as the basis of the
analysis. Some of the analysis presented at the meeting has
now been revised and this outline is based on the most
recent results. This analysis shows potential but is not
completed and so this part of the paper should be consid-
ered to be work in progress rather than final results.

Reservoir and excess pressure along the
human aorta

The definition and separation of pressure

Pressure is a such a familiar concept that we frequently
forget how it is defined scientifically. In thermodynamics
pressure P is defined as

PZ�
�
vU

vV

�
S;Nk

where U is the free energy of the system, V is its volume, S
is the entropy and Nk are the mole numbers of the different
chemical components of the system. This fundamental
definition is essentially useless in the clinic because of the
impossibility of measuring or controlling the intrinsic and
extrinsic parameters.

In mechanics the formal definition of P is

PZ
1

3
sii

where TZsij is the stress tensor where i; jZ½1; 2; 3� indicate
the three cartesian coordinates and we use the summation
convention for indices. In the jargon of mechanical anal-
ysis, P is the average of the trace of the stress tensor or,
more accessibly, the normal component of force per unit
area. Definition of the stress tensor is not straightforward in
a system involving blood, an extremely complex fluid, and
distensible arterial walls. However, this expression is the
basis of all of the clinically useful definitions of pressure.
Amazingly, despite much effort, no one has been able to
show that the thermodynamic and mechanical pressures
are equivalent.

Pressure is frequently divided into component parts.
Probably the most common division of pressure is the gauge
pressure

PgaugeZPabsolute � Preference

It is possible to define an absolute pressure Pabsolute.
However, this is frequently inconvenient because we usu-
ally function in a sea of atmospheric pressure. For this
reason we generally use pressure to mean the pressure
relative to some reference pressure, i.e. a gauge pressure.
This is common practice in the catheter lab where the
pressure transducer is calibrated to some pressure relative
to the heart which includes the atmospheric pressure. I do
not know of any clinic that routinely records the

atmospheric pressure which means that it is practically
impossible to explore the effect of absolute pressure in
hemodynamics.

The most famous separation of pressures into different
components is undoubtedly the Bernoulli equation

Pþ 1

2
rU2 þ rgHZP0

where P is the hydrodynamic pressure, r is the density
and U is the velocity of the fluid, g is the gravitational
constant, H is the height and P0 is a constant generally
called the total pressure. This equation holds along a
streamline in steady flow of an inviscid fluid. In unsteady
flows it is necessary to add another term involving the
velocity potential that accounts for the effects of ac-
celeration and is difficult to evaluate except in the
simplest of flows. This is an energy equation (pressure has
the units of energy per unit volume) that divides the
pressure into potential and kinetic energy. Despite the
formal restrictions in its derivation, this equation is very
useful clinically and is the basis of estimates of pressure
in the cardiac chambers in echocardiographical in-
vestigations. Even though blood is not inviscid and the
arterial system is highly dynamic, this equation provides a
very useful way of interpreting various observations of
arterial hemodynamics.

In the context of this meeting, undoubtedly the most
common separation of pressure into different components
is the separation of the arterial pressure waveform into its
forward and backward components shown in Fig. 1. This
follows from the work by Westerhof and his colleagues
who showed that simultaneous measurements of the
pressure and flow waveform could be used for the sepa-
ration through calculation of the reflection coefficient.1 A
few years later Laximinarayan, working in Westerhof’s
group, showed that the separation could be made more
conveniently using the characteristic impedance.2 I sus-
pect that everyone attending this meeting has made use of
this result in their work. In the separation, it is unclear
how to apportion the zeroth component (the steady
pressure and flow) between the forward and backward
waveforms. Westerhof et al. cleverly got around this
problem by letting the forward and backward waveforms
drift relative to the scales of their measured counterparts.
Laximinarayan resolved the problem by not showing any
scales at all. This observation, seemingly trivial, is actu-
ally important and has a bearing on the definition of the
reservoir pressure.

More than a decade ago, we formulated the reservoir-
wave hypothesis that it might be useful to divide the
measured arterial pressure into a reservoir pressure and an
excess pressure defined as the difference between the
measured pressure and the reservoir pressure.3 Our argu-
ment was based on the success of the Windkessel model in
describing the diastolic pressure waveform and in the
original paper we separated the pressure into a ‘Wind-
kessel’ pressure and a ‘wave’ pressure. After publishing
that paper we realised that the Windkessel pressure was,
by definition, uniform throughout the arterial system and
could not describe the observed propagation of this
component of the pressure down the aorta. For this reason
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in subsequent papers we defined the ‘reservoir’ Pr and
‘excess’ Px pressures.4

Pðx; tÞZPrðt� tðxÞÞ þ Pxðx; tÞ

where tðxÞ is the wave travel time from the aortic root to
location x. Note that Pr varies in time but is uniform
throughout the arteries. This hypothesis was tested
extensively in experiments in dogs and there is now a rather
extensive literature on the subject.5

One of the unexpected observations of our experimental
work was that the excess pressure waveform derived by
subtracting the reservoir pressure from the measured
pressure was very similar in shape to the flow waveform at
the aortic root. Assuming that this similarity is always true,
it is possible to derive the reservoir pressure from the
measured pressure alone.a

This ‘pressure-only’ algorithm has been used to retro-
spectively calculate the reservoir and excess pressure
waveforms from measured arterial pressure waveforms in a
number of clinical studies which have shown that various
parameters related to these pressures are significant risk
factors for various cardiovascular events.7e9 These studies
indicate that reservoir pressure is, indeed, a useful
concept, but that is not the topic of this talk.

Reservoir and excess pressure in the human aorta

One of the primary assumptions in the definition of reser-
voir pressure is that it is uniform throughout the arterial
system and is determined by the global compliance and
resistance. The excess pressure, on the other hand, varies
at different locations in the arteries and is dominated by
local waves. The uniformity of the reservoir pressure is
observed in the measurements of pressure and flow at
different locations in the dog. It has not, however, been
tested in man. Recently we had the opportunity to analyse
high fidelity pressure measurements made at 5 different
arterial locations in 40 patients. This work has recently
been written up and submitted and I will only discuss a few
of the relevant results here.10

The pressure was measured sequentially at 5 locations in
the aorta; 1-the ascending aorta, 2-the transverse aortic
arch, 3-the descending aorta at the level of the diaphragm,
4-at the level of the renal arteries and 5-at the aortic
bifurcation; by withdrawing the pressure transducer tipped
catheter to the appropriate location determined by angi-
ography. The pressure was measured for 25 s at each site,
Fig. 2. These data were ensemble averaged by an algorithm
that excluded outlier beats automatically (based on the
magnitude of the correlation of the beat to the ensemble
average beat). The ensemble average waveforms P were
used to calculate the reservoir Pr and excess Px pressure
using the pressure-only algorithm. Figure 3 shows P � Pd,
Pr � Pd and Px at the 5 measurement sites in one of the
patients, where Pd is the diastolic (minimum) pressure
measured at each site, The thin black line connects the
diastolic points at the different locations and its slope in
the x � t plane is an indication of the wave speed in the
aorta.

There are several notable features of this plot, which
are common to all of our measurements. First, in all cases,
Pr is very close to P during diastole. This is not surprising
because the algorithm that calculates Pr derives two of the
fitting parameters by fitting an exponential model to the
diastolic portion of P. Second, Px is very close to P during
very early systole. This follows from the model of Pr as a
solution of the equation for overall mass conservation in
the arteries C dP

dtZQ in � Qout where Qin is the inflow from
the ventricle at the aortic root and the outflow is

Figure 1 The separation of measured pressure PM and flow IM waveforms into their forward PF and IF and backward PB and IB
components. (a) The original results which used the reflection coefficient.1 (b) The results using the now standard method using the
characteristic impedance.2

a It has been asserted that the reservoir pressure is simply 2
times the backward pressure waveform discussed previously.6 This
assertion is based on the following (paraphrased) argument: In
deriving Pr from P it is assumed that PxhP� PrZzQ where z is the
characteristic impedance. Rearranging, PrZP� zQ. The backward
pressure waveform is derived using PBZ1

2 ðP� zQÞ. Therefore
PrZ2Pb. There are two errors in this argument. The derivation of
Pr from P assumes at any location x that PxðxÞZzQð0Þ where z is a
fitted constant with dimensions of impedance and Qð0Þ is the flow
at the aortic root ðxZ0Þ. Thus Pr � 2PBZzQðxÞ � zQð0Þs0. For
measurements at the root, Pr � 2PBZðz� zÞQð0Þ. For this to be
zero requires zZz which will only be true when there are no
reflections.ðPBZ0Þ. The asserted relationship between Pr and PB

is valid, however, during diastole: Because flow is negligible it
follows that PFðtÞZPBðtÞZ1

2PðtÞ during diastole, Pr is derived by
fitting Pr to P during diastole, hence PrðtÞZ2PBðtÞ during diastole.
Pr during systole is calculated using the differential equation for
overall mass conservation dPr

dt Z
P�Pr

zC � Pr�PN

RC which avoids any as-
sumptions about local waves during systole.
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determined by simple resistance relationship QoutZ
ðPr�PNÞ

R ,
where PN is a fitted parameter that describes the pressure
at which flow through the microcirculation goes to zero and
R is the resistance of the microcirculation downstream of
the terminal arteries. This outflow during diastole, when
QinZ0, generates the diastolic decrease in pressure. The
outflow will carry on during systole and during the short
period at the start of systole when Qin < Qout, Pr will
continue to fall reaching a minimum when Q inZQout. This
decrease and minimum in Pr can be seen during very early
systole at each measurement site. This simple physical
argument based on conservation of mass in the arterial
system explains why Px is very close to P during early sys-
tole. Third, the well-known phenomenon of pressure
peaking in the distal aorta can be seen in P � Pd at the

different sites. The average pulse pressure Ps � Pd
increased from 66.6 mmHg at the aortic root to
77.8 mmHg at the aortic bifurcation. From the figure, it is
apparent that this increase in the pulse pressure is
accounted for almost entirely by the increase in the
maximum of Px, the maximum of Pr being effectively
constant.

These observations were tested by applying intra-class
correlation analysis to the data at all of the sites in all of
the patients. The results shown in Fig. 4 confirm the con-
clusions drawn from the results for a single patient shown in
Fig. 3. The systolic pressure Ps is shown by the black squares
and the black dots indicate the 95% CI in the mean at each
site. Mean Ps increases from 135.7 mmHg at the aortic root
to 144.3 mmHg at the aortic bifurcation. The peak of bPr

Figure 2 The pressure measured over 25 s in the ascending aorta of one patient (left) was ensemble averaged to give the
measured pressure waveform used in the analysis. The standard deviation at each measurement time is not shown but was
generally of the order of 4 mmHg, mainly due to the respiratory variation in the pressure seen in the measured data on the left.
Some patients exhibited missing or ectopic beats and these were ignored in the calculation of the ensemble average pressure
waveform.

Figure 3 The ensemble average pressure P� Pd (solid line), the calculated reservoir pressure Pr � Pd (dashed line) and excess
pressure Px (dash dot line) at the 5 measurement sites in one of the patients. Pd is the diastolic pressure. Since the measurement
sites were determined by angiography they are indicated by their index rather than a distance along the aorta.
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decreases very slightly from 51.4 mmHg at the aortic root
to 48.7 mmHg at the aortic bifurcation, a difference
smaller than the 95% CI for this variable. The peak excess
pressure bPx, however, increases significantly from
24.2 mmHg at the aortic root to 40.6 mmHg at the aortic
bifurcation. Note that although PZPr þ Px at every time,
the peaks occur at different times in the cardiac cycle and
so the sum of the peaks of Pr and Px do not have to equal
the peak of P.

We studied the variation of many other parameters
describing the reservoir and excess pressures calculated
from the clinical measurements of aortic pressure at
different sites in the aorta and anyone who is interested
should refer to the paper when it is published. For the
purposes of this talk, these measured results support the
assumption that Pr is uniform along the aorta. Unfortu-
nately, the flow at the aortic root was not measured and so
we could not test the second basic assumption of the
pressure-only calculation of Pr that the Px waveform is
proportional to Qin in man.

To conclude this section of the talk, we note that the
definition of reservoir pressure does not rely on periodicity
of the aortic pressure. This is in contradistinction to
impedance analysis of aortic pressure where periodicity is
implicit in the calculation of the Fourier components of the
waveform. For this reason, the results of impedance anal-
ysis cannot be extended to unsteady phenomena.

Figure 5 shows the instantaneous P, Pr and Px calculated
beat by beat for measurements made in the ascending
aorta of one patient exhibiting regular cardiac behaviour.
There are variations in the beat by beat measurements of P
(solid line) that are most likely due to respiration. Pr

(dashed line) and Px (dash dot line) calculated beat by beat
also show some variation from beat to beat. We have also
calculated the ensemble average of the beat by beat Pr and
Px and find that they are almost identical to the Pr and Px
calculated from the ensemble average P.

Figure 6 shows the pressure measurements in the
ascending aorta of a patient who exhibited a number of
long beats during the period of measurement. The main
message of this plot is that it is possible to calculate Pr and
Px during highly irregular cardiac behaviour. We have not
explored the utility of this separation but it seems likely
that the excellent fit of Pr to P during extended diastole is
telling us something about arterial mechanics during
irregular beats and that this mode of analysis my be useful
in developing a better understanding of arterial mechanics
during these periods.

To summarise this section, we have shown:

(1) Pressure has been defined and divided in many ways,
some useful, some not.

(2) Reservoir and excess pressure can be calculated from
pressure measurements in the human aorta.

(3) Reservoir pressure propagates down the aorta at the
same speed at the measured pressure waveform.

(4) Reservoir pressure is not non-uniform down the
aorta.

(5) Reservoir and excess pressure can be calculated in
irregular beats and may be helpful in understanding
these unsteady phenomena.

Low-frequency arterial pressure waves

In part 2 of my talk I would like to describe an asymptotic
analysis of the input impedance of a simplified arterial
tree. Those of you who know my previous work on wave
intensity analysis may be surprised at this direction in my
research. I am not well-versed in impedance analysis and
the presence in the audience of Nico Westerhof and Michael
O’Rourke, both founders and proponents of the subject, is a
bit daunting. It may also appear that this part of my talk is
outside of my assigned title, but I hope to convince you that
there is a connection. In fact, the starting point of this work
is my belief that both impedance and wave intensity anal-
ysis are founded on the same mechanical principles and
therefore they should share many similarities.

The stimulus for this study is a paper published by M.G.
Talylor in 1966 where he calculated the input impedance of
a highly idealised arterial network (uniform bifurcating tree
with 7 generations) with identical properties except that
the vessels in each generation had randomly generated
lengths.11 In a heroic calculation, given the primitive na-
ture of computers at the time, he generated different
random networks and calculated their input impedances
which he presented as power spectra. He published the
results for 3 different realisations shown in the insets in
Fig. 7.

The most striking thing about these results is how
different the input impedances are from each other over
the range of frequencies calculated. The only feature of
the spectra that is constant in these randomly generated
networks is the low-frequency behaviour, u < p=4. The

Figure 4 The results of the ICC analysis of patient data at
the different sites of measurement: 1-asc aorta, 2-transverse
aortic arch 3-desc aorta at the level of the diaphragm, 4-
desc aorta at the level of the renal arteries and 5-aortic
bifurcation. The solid symbols indicate the mean values and
the smaller dots indicate the 95% confidence intervals.
(squares, solid line) systolic pressure, (circles, dashed line)
peak reservoir pressure and (diamonds, dash dot line) peak
excess pressure.
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Figure 5 The instantaneous aortic pressure P (solid line), and Pr (dashed line) and Px (dash dot line) calculated from P beat by
beat during the 25 s measurement in the ascending aorta of a patient with a regular cardiac cycle. There are variations from beat to
beat, probably due to respiration. These difference may be clearer in Px where the peak values vary in a very regular way at a
frequency that is commensurate with the (unmeasured) respiratory cycle.

Figure 6 P, Pr and Px (format identical to Figure 5) for a patient with a highly irregular cardiac cycle. Note that it is possible to
calculate Pr and Px during both the ‘normal’ and ‘extended’ cardiac cycles. The ability to analyse irregular beats suggests that this
mode of analysis may be useful for studying patients who are not exhibiting regular cardiac behaviour.

Figure 7 The power spectrum of the input impedance calculated for the randomly generated arterial trees shown in the insets.11

All of the properties of the vessels making up each generation were uniform except for their randomly generated length. The
terminal impedances of the terminal branches (seventh generation) are identical for every case. The black lines are copied from
Figures 6e8 from the paper with other lines giving results for different values of the terminal resistances removed. The grey dashed
line is a fit to the low-frequency input impedance suggested by the analysis. It is not part of Taylor’s results.
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value of the impedance at zero frequency is equal to the
net resistance of the terminal resistances which is held
constant. In all three cases the amplitude of the impedance
falls off very smoothly to a minimum at approximately the
same frequency before behaving in an apparently random
way at higher frequencies. This suggested that an asymp-
totic analysis of the input impedance of an arterial tree
might reveal some interesting behaviour.

Asymptotic analysis of the input impedance

For the analysis I assume that the arterial network is a
bifurcating tree (not necessarily a symmetrical tree) where
all of the properties of the individual arteries are uniform
and known: length L, area A, compliance C, wave speed c,
wave travel time T and characteristic impedance z. The
nodes in the tree are assumed to be bifurcations (internal
nodes) where three vessels connect or termini (external
nodes) where the terminal arteries are connected to simple
known resistances and the root is connected to the ventricle.

We assume that the wave speed c in each vessel is real
and given by the BramwelleHill relationship cZ 1ffiffiffiffi

rD
p where

the distensibility DZ1
A

dA
dP, the fractional change in area with

pressure. For this simple case there are some interesting
interrelationships between the variables that are not as
well-known might be expected. For a uniform cylindrical

tube with constant length the compliance CZdV
dPZL dA

dP.

Substituting from the equation for wave speed CZLA
rc2
. We

also assume that the vessels are elastic so that the char-
acteristic impedance zZrc

A . Using these results we find that

zCZ
�
rc
A

��
LA
rc

�
ZL

cZT, the time it takes for a wave to travel

the length of the artery.
The asymptotic analysis is based on the equations

derived by Westerhof relating the impedance Z0n at the
input of vessel n to the reflection coefficient Gn at the
terminal end of the vessel.12

Z0nZzn

�
1þGne�2iuTn

1�Gne�2iuTn

�

where u is the frequency of the Fourier component, zn is
the characteristic impedance and Tn is the wave travel time
of vessel n. The reflection coefficient depends on the ter-
minal impedance at the outlet of vessel ZTn and the char-
acteristic impedance zn

GnZ
ZTn � zn
ZTn þ zn

Since trees are parallel in their structure, it is most
convenient to recast these equations into terms of admit-
tances YZ1=Z.

Y0nZ
1

zn

�
1�Gne�2iuTn

1þGne�2iuTn

�

and

GnZ
1� znYTn

1þ znYTn

To complete the analytical formulation for a bifurcating
network, Westerhof showed that the outlet admittance of

the parent vessel is equal to the sum of the input admit-
tances of the daughter vessels (Kirchoff’s law).

If we define the maximum wave travel time over all of
the vessels in the tree TZmaxðTnÞ and tnZ

Tn

T , then we can
take uT � 1 as an asymptotic variable. This low-frequency
limit is formally equivalent to the long-wavelength limit. In
this limit we can expand the expression for the input
admittance neglecting terms of O ðuTÞ2.

Y0nZYtn þ iuT
tn
�
1� Y2

Tnz
2
n

�
zn

If we assume that the admittances have the form YZsþ
iuTh where s and h are real, we can derive the asymptotic
recursion relations

s0nZ
X
i˛Dn

s0i

h0nZ
X
i˛Dn

0
@ti
�
1� Y2

Tiz
2
i

�
zi

þ h0i

1
A

where Dn is the set of vessels downstream of vessel n. We
assume that terminal artery k is connected to a known
terminal resistance Rk. Thus we know for the termini that
skZSkZ 1

Rk
and hkZ0. By recursion starting at the terminal

arteries back to the root of the tree (nZ1), we find after a
lot of algebra

Y01ZS1 þ iuC
�
1

where

S1Z
X
k˛K

SkZ
1

R
ðnet arterial admittanceÞ

and

C
�
1Z
X
n˛N

Cn

�
1� S

2

nz
2
n

�
ðnet effective complianceÞ

where K is the set of all termini and N is the set of all of the
vessels in the network. The first result says that in the low-
frequency limit the real part of the input admittance of the
arterial tree is equal to the sum of all of the terminal ad-
mittances. This is the net admittance of the arterial tree
which determines the steady (uZ0) behaviour of the
network and so this result is expected. The second result is
less expected. It is usually assumed that the first order
behaviour of the system will depend on the sum of the
compliances of the vessels in the network whereas this
analysis indicates that it is the sum of the individual vessel
compliances weighted by a factor that depends on the
square of the product of the characteristic impedance of
the vessel and the net admittance of all of the termini
downstream of the vessel.

I have not been able to think of a simple physical
explanation for the form of this effective, weighted
compliance, but there is a simple argument that indicates
the need for some form of weighting. Consider a terminal
vessel whose characteristic impedance matches its termi-
nal resistance. The reflection coefficient at the terminal
end of this vessel will be zero ðSnznZ1Þ and so the wave in
this vessel will not be reflected back into the rest of the
tree. This means that the rest of the network is not
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influenced by the compliance of that vessel and we would
not expect it to affect the first order behaviour of the tree.
The weighting ð1� S

2

nz
2
nÞ suggests that the influence of the

compliance of vessel n is influenced by the degree to which
the wave in that vessel is reflected back into the network.

Reverting to impedance, these results indicate that the
low-frequency behaviour of the tree is

Z01Z
R

1þ iuRC
�
1

This is familiar as the input impedance of a 2-element
Windkessel with net arterial resistance R and compliance
equal to the effective compliance C

�
1 defined above. The

grey dashed lines in Fig. 7 are fits of this relationship to the
low-frequency input impedance calculate by Taylor. Un-
fortunately he did not give enough information about the
lengths of the arteries in each realisation of his random
models to enable us to test the accuracy of the estimate of
effective compliance. In identical calculations that I have
performed where the distribution of lengths is known, the
use of the effective compliance provided an excellent fit to
the low-frequency amplitude of the calculated input
impedance.

Low-frequency flow and pressure

Having derived the low-frequency input impedance of the
arterial tree, we can now calculate the pressure and flow
throughout the network starting at the root and working
downward through the tree. We first observe that flow in
the parent vessel (index a) at a bifurcation distributes into
the daughter vessels (indices b & c) depending on their
input impedances.

~Qb;c

~Qa

Z
Y0b;c

Y0b þ Y0c
Z
Y0b;c

YTa

where fð,Þ indicates the Fourier transform of ð,Þ. The last
equation follows from Kirchoff’s law at the bifurcation. In a
tree there is a unique path from the root of the tree to
vessel n which can be written as a list of edges
AnZ½e1; e2; e3;.; ej�. Using the above relationship, the di-
vision of flow along this path is

~Qn

~Q 01

Z
Y0e2

YTe1

Y0e3

YTe2

.
Y0ej

YTej�1

Z
Y0n

YT1

Y
i˛An

Y0i

YTi

Substituting the low-frequency admittances

~Q 0n

~Q 01

Z
Y0n

YT1

Y
i˛An

 
1þ iuC

�
i

Si

!
Z

Y0n

YT1

 
1þ iu

X
i˛An

T�
i

!

where we have defined the effective time constant T�
i Z

C
�
i

Si
.

The last equation comes from the asymptotic approxima-
tion to the product neglecting terms of order O ðuTÞ2.

By definition of admittance, ~Q 0nZY0n
~P0n, which allows

us to express the last equation in terms of the Fourier
pressure component

~P0n

~P01

Z1þ iu
X
i˛An
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The summation in this expression is simply the summa-
tion of the effective wave travel times over all of the
vessels on the path from the root of the arterial system to
vessel n. Using the bar notation for net quantities previ-
ously used for Sn and C

�
n, we define this sum as T

�
n. We now

apply the inverse Fourier transform and the shift theorem
to conclude that

P0n

�
t� T

�
n

�
ZP01ðtÞ

in the low-frequency limit. In words, this result indicates
that the low-frequency pressure waveform at any point in
the arterial tree is equal to the low-frequency pressure
waveform at the aortic root delayed by the effective wave
travel time from the root to that point. The dependence on
the effective wave travel time (based on the effective
compliances) instead of the wave travel time is another
unexpected result of this analysis.

We conclude this section by noting that the low-
frequency component of the pressure shares the funda-
mental properties of the reservoir pressure, it is uniform
throughout the arterial system but delayed by a wave travel
time. In the present company I am reticent to claim that it
is the reservoir pressure; this will require further analysis
and study. However it is clear, whatever your biases about
impedance and wave intensity analysis, that the low-
frequency component of the pressure has some inter-
esting properties and certainly warrants further study.

To summarise this section, we have shown:

(1) The low-frequency input impedance is Windkessel-

like: Z01Z R

1þiuRC
�
1

.

(2) The relevant compliance is an effective compliance:

C
�
1Z

P
n˛N

Cnð1� S
2

nz
2
nÞÞ.

(3) The low-frequency pressure is uniform throughout
the arterial system, but delayed by a wave travel

time: P0nðt� T
�
nÞZP01ðtÞ.

(4) The wave travel time is the effective wave travel

time: T�
nZ

Tnð1�S
2

nz
2
nÞ

Snzn
.

Arterial mechanics via wave fronts

The third part of my talk is inspired by ‘future’ in the title
of this meeting and concerns my current work using wave
fronts to analyse arterial hemodynamics. The work has
progressed since I gave the talk and this section is based on
my most recent results. These differ in some technical as-
pects from the work that I described in my talk, but the
broad (and tentative) results remain the same.

The spirit of the analysis is to explore the influence of the
complexity of the arterial network on its hemodynamics by
constructing a model that minimises the many other com-
plexities of arterial mechanics. To do this we assume that
the arterial system can be modelled by a network of uniform
arterial segments connected together at bifurcations and
connected to the heart at the root. We assume that flow in
the individual arteries can be described by the 1-D conser-
vation equations of mass and momentum. We neglect
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viscous dissipation in the arteries and viscoelastic effects in
the arterial walls. We further assume that the terminal
vessels in the network are connected to the venous system
by simple resistances describing flow through the microcir-
culation. In our latest work we consider the possibility of
networks with loops so that we can study the effects of
anastomoses on arterial hemodynamics.

As a final simplification, we consider what happens to a
single wave front introduced at the root at tZ0. This, in
fact, is not a limitation of the work because we can analyse
more complex input waveforms by convolution of the single
wave results. It does, however, greatly simplify the pre-
sentation of the results. Physically a single wave front at
the root is equivalent to imposing a step change in flow (or
pressure) at the root and then looking at the response of
the arterial system to that change in conditions.

To help make our results concrete, we will present results
based on probably the most widely used arterial model, the
55 artery model introduced by Westerhof14 during his PhD
research and later modified by Stergiopulos15 during his PhD
research. Amongst many others this model has been used by
Segers16 in his experimental PhD research and Alastruey17 in
his computational PhD research. I suspect that Nico West-
erhof had no idea when he was collecting data for his model
that he was producing such an effective PhD-machine. The
model is a tree without any loops and is shown in Fig. 8a in a
form that emphasises its binary tree structure with 55 edges
(arteries) and 56 nodes, 27 internal and 29 external. the
altitude of the tree, the maximum number of generations, is
14. A more anatomically recognisable version of the tree is
shown in Fig. 8b. Here the length of each edge is approxi-
mately proportional to its physical length and the head and
neck arteries have been moved from under the right arm to
a position above the heart. In a 1-D model, the propagation
of waves in an arterial segment depends only on axial dis-
tance and does not depend on its spatial geometry. That is,
the behaviour of waves in the arteries, in this approxima-
tion, depends only on the topological connectivity of the
arteries and not their geometry.

The generation and evolution of wave fronts in the
arterial tree

The 1-D conservation equations in each vessel together
with a suitable tube law describing the change in area of

the vessel with pressure give a hyperbolic system of ODEs.
They are amenable to solution by the method of charac-
teristics introduced by Riemann.18 The salient feature of
this solution for our model which neglects viscous effects is
that any perturbation of conditions in the vessel will
propagate as a wave in both the forward and backward
direction. Following the example of gas dynamics where
the 1-D model is well-developed, we will assume that the
basic form of wave is a wave front, a step change, either
positive or negative, in the pressure and the flow across the
wave. It is easy to build any waveform by a sequence of
discrete wave fronts which makes them convenient as a
basis for any waveform. We make the further simplification
that the wave fronts are linear in the sense that they are
additive and do not interact with each other when they
cross. This assumption is essentially the acoustic limit in
fluid dynamics and can be ensured in the absence of shock
waves simply by considering wave fronts whose amplitudes
are sufficiently small.

With all of the simplifying assumptions we can think of
each wave front as a ‘particle’ that propagate unchanged
through the edge (vessel) until it encounter a node. When it
encounters an external node the wave front is reflected
with a magnitude that is given by a reflection coefficient.
When it encounters an internal node the wave front pro-
duces three wave fronts, a reflected wave front with a
magnitude given by a reflection coefficient and two trans-
mitted waves with magnitudes given by a transmission co-
efficient. The problem thus reduces to following the
evolution of the single wave front introduced at the root at
tZ0.

Because the interaction of a wave front with an internal
node produces three waves, the total number of waves in
the system will grow exponentially. The amplitude of the
new waves decreases on average and we will see that the
amplitude gets exponentially small as the number of waves
gets exponentially large. The net effect of the myriad
numbers of vanishing small waves is not immediately
apparent and we have to be careful in the analysis not to
truncate results inappropriately.

To facilitate the tracking of the waves in the system we
introduce the idea of a wave history WnZfe0; e1;
e2;.; ei; eiþ1;.; eN�1; eNg which is the sequence of edges
visited by wave n. For waves introduced at the root, e0Z1.
N is the number of edges visited by the wave which leads to

Figure 8 The 55 artery model used for the calculations.13 The binary tree nature of the network is shown in the sketch (a) where
the edges (arteries) are arranged by their generation. In the sketch (b) the length of the edges is approximately proportional to
their physical length and the head and neck arteries have been moved from below the right arm to above the location of the heart
(the root of the tree). It should be more recognisable anatomically although the aorta is shown as straight rather than arched.
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the concept of a step, which is defined as going from one
node of the edge to the other. Because each edge has a
wave travel time associated with it, the time it takes a
wave to execute one step depends upon the vessel it is in.
This leads to difficulties in calculating the location of a
wave at a particular time whereas locating a wave after a
given number of steps is simple. The synchronisation of
steps with time is a final step in the analysis.

After N steps the total time (duration) of wave Tn is the
sum of all of the wave travel times in all of the edges it has
traversed

TnZ
XN
iZ0

Tei

The amplitude of the wave An is the product of all of the
reflection and transmission coefficients at all of the nodes
it has encountered

AnZA0

YN�1

iZ0

Geieiþ1

where Geieiþ1
is the reflection/transmission coefficient as the

wave passes from edge ei to edge eiþ1 in its wave history.
The exponential growth of the number of wave fronts

and hence wave histories is an important feature of this
theory. The exact number depends on the topology of the
network. For large N the number of waves is given by the
recursion formula Nwaves

nþ1 Z3NiN
waves
n , where Ni is the number

of internal nodes. We also know that mean distance moved
during a random walk on a tree, like random walks on a line
or a square grid, is proportional to the square root of the
number of steps. Thus, for a tree with altitude A the
average number of steps needed to traverse the whole tree
is A2. For the 55 artery model, AZ14 and so approximately
200 steps are needed for the waves to spread throughout
the tree. After 200 steps there are approximately 1:4� 1081

waves.b The vast number of waves indicates the necessity
and the validity of a statistical approach to the problem.

Fortunately the importance of large networks on modern
life has stimulated many advances in the field of network
theory and we will adopt some of these methods into our
analysis. Networks can be described in many ways but for
our purposes the most convenient representation is the
connectivity matrix. For a network with N nodes and E
edges the connectivity matrix is an N � E matrix with each
row representing one node and each column representing
one vessel (edge). By definition each edge is connected to 2
nodes, one identified as the input node and the other the
output node. In rooted binary trees, it is straightforward to
describe the node closest to the root as the input node. In
more general networks with loops, this is not possible and
the designation of input and output nodes can be arbitrary.
Each column in the connectivity matrix has �1 in the row of
the input node and þ1 in the row of the output node. All

other entries in the row are zero. This matrix provides a
complete description of the topology of the network. In
particular summing the number of non-zero entries along a
row gives the degree of the node defined as the number of
edges that are connected at that node. We assume that the
arterial network can be modelled by nodes of degree 3
(internal bifurcations) or of degree 1 (external nodes). Real
arterial networks sometimes include trifurcations but these
are rare and it is almost always possible to model them as
two bifurcations separated by a very short edge.

Given the topology of the network, it is necessary to find
a compact way to represent the reflection and transmission
coefficients at the nodes. For an external node k connect-
ing a resistance Rk to an edge with a characteristic
impedance zk, the reflection coefficient Gk is

GkZ
Rk � zk
Rk þ zk

This is the same as the reflection coefficient defined in
the impedance analysis in Section Reservoir and excess
pressure along the human aorta. The reflection and trans-
mission coefficients for an internal node depend upon the
edge in which the wave front approaches the node. For an
internal node i connecting edges a, b and c the reflection
and transmission coefficients are given by the 3� 3 matrix

GiZ

0
@ ga 1þ gb 1þ gc

1þ ga gb 1þ gc

1þ ga 1þ gb gc

1
A

where the reflection coefficient for a wave in a can be
written most conveniently in terms of the characteristic
admittances yZ1

z

gaZ
ya � yb � yc
ya þ yb þ yc

gb and gc can be found by permutation of the indices. The
transmission coefficient for a wave with a reflection coef-
ficient g is 1þ g. Note that �1 � g � 1 and that 0 � 1þ g �
2. It can also be shown with a little algebra that the sum of
the reflection coefficients over all of the edges
ðga þ gb þ gcÞZ� 1. With even more algebra it can be
shown that G2

iZI where I is the identity matrix. This means
that the matrix of reflection/transmission coefficients is its
own inverse or, in other words, it is idempotent of degree 2.
Physically this means that with all of the simplifying as-
sumptions that we have made, particularly the neglect of
viscous effects and the linear behaviour of the wave fronts,
no energy is lost when a wave front interacts with an in-
ternal node. This is not true for interactions with external
nodes where the amplitude of the reflected wave is less
than one which means that some energy is lost.

Knowing the reflection and transmission coefficients at
each node, we can now construct a global matrix of co-
efficients for the whole network. For a matrix with E edges,
this will be a 2E � 2E matrix where each edge has a separate
row for the forward and backward waves in the edge. For a
large network this can be a rather large matrix, for example
the matrix for the 55-artery model is 110� 110, but the
matrices are sparse (mainly zero elements) and they can be
easily accommodated by current computers. We term this
matrix the ‘scattering matrix’ by analogy to scattering

b J. Mynard pointed out to me after the talk that this number is
equal to the estimated number of atoms in the universe.19 Intui-
tively I felt that the calculation leading to this result must be
flawed but it is, in fact, consistent with the exponential growth of
complexity. For example, Shannon, the founder of information
theory, estimated a lower bound for the possible number of moves
in chess to be 10120.
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theory in acoustics and microwave transmission theory.
Calculating the amplitude of the waves in the system now
reduces to a problem of matrix multiplication. Given an
initial wave at the root with amplitude a0Z½1; 0; 0; 0;.; 0�T ,
i.e. a unit step wave at the root) the amplitude of the waves
in the system after N steps is given by

aNZGNa0

Thus, the history of the waves in the system after N
steps is reduced to evaluating the powers of G.

Eigen-modes and time constants

Although computers can calculate the power of a large
matrix very quickly, the representation and interpretation
of the results is difficult. Fortunately linear algebra pro-
vides a way to deal with the problem that provides results
that are easy to interpret; eigenvalues and eigenvectors.
An eigenvalue l and eigenvector v of matrix G are defined
by the equation

GvZlv

That is, multiplying an eigenvector by the matrix results
in a scale factor times the eigenvector. This is very
convenient when we are taking powers of the matrix
because successive multiplications by the matrix yields

GNvZlNv

Thus, the power of the matrix times an eigenvector is
just the power of the scalar eigenvalue times the eigen-
vector, and the problem of matrix multiplication further
reduces to multiplication by a scalar.

Because they are central to matrix calculations, the
theory of eigenvalues and eigenvectors is a well-studied
branch of linear algebra. In general an N � N non-
degenerate matrix can have N eigenvalues each of them
with an associated eigenvector. The eigenvalues determined
by finding the roots of an N th order polynomial, however,
are not necessarily unique and it is difficult to determine the
multiplicity of eigenvalues without calculating them. Also,
for a real matrix the eigenvalues can be complex in which
case they occur as conjugate pairs, and these have complex
conjugate pairs of eigenvectors associated with them.

Traditionally the eigenvectors are taken to be unit vectors
because it is the direction of the eigenvector, not its
amplitude, that is important. Since the sum of the square of
the absolute value of the coefficients of a unit vector is equal
to 1, the eigenvectors can be thought of as eigen-modes
associated with each eigenvalue. The evolution of these
eigen-modes as the number of steps in increased is deter-
mined by the absolute value of the eigenvalue. If we define
AmðNÞ to be the amplitude of mode m, after N steps then

AmðNÞw
���lm
���NZeN logjlmj

where we have written the power in its exponential form. If
jlj > 1, logjlj > 0 and the amplitude of the mode will grow
exponentially with the number of steps. If jlj < 1, logjlj < 0
and the amplitude of the mode will decrease exponentially.
The rate of decrease being determined by the value of logjlj.

Physically we are interested in the behaviour of the
system with time, not with the number of steps taken by
the wave fronts. To relate the results in terms of steps to
time forces us to turn to statistical methods. Given the
wide range of wave travel times in the arterial network (in
the 55 artery model they range from 1.9 ms for the celiac
artery to 71.5 ms for the two brachial arteries). Fortu-
nately, we can apply statistical arguments with a high level
of confidence, given the large number of waves that are
generated.

For our analysis, we assume that the time it takes to
execute N steps is given in a probabilistic sense by tZNhTi,
where hTi is the appropriate average wave travel time.
There are a number of candidates for the appropriate
average, but we believe that best choice is the weighted
average wave travel time for each particular mode. As
discussed previously, this weighting is the square of the
magnitude of the coefficients of the eigenvector which
defines the mode. That is, for mode m

hTimZ
X
i˛N

Ti

�����vmi

���2

where Ti is the wave travel time of vessel i and vmi
is the

i th component of the eigenvector vm associated with mode
m. Substituting for N in the equation for the amplitude of a
mode

AmðtÞwelogjlmjt=hTimZe�t=tm

where we have defined the time constant for the mode

tmZ� hTim
logjlmj

The minus sign in the definition is usual since we are only
interested in eigenvalues with jlj � 1 with negative
logarithms.

The conclusion of this analysis is that the for large times,
when we can expect tZNhTi to be a good estimate, each of
the modes of the system will contribute an exponentially
decaying term with different time constants for each of the
modes. The long-time behaviour of the system will depend
on the mode with the longest time constants, since the
other modes will die away more quickly. Ideally this time
constant would correspond to the time constant that is
usually cited for the diastolic pressure decay. For the
limited number of cases which I have studied, this is not the
case and the largest time constants are commonly two or
three times larger than the expected diastolic time con-
stant. This could be due to deficiencies in the models I have
used, an extraordinary number of parameters is needed to
define a realistic arterial network. Alternatively, it could be
related to problems associated with fitting a single expo-
nential to a multi-exponential function.

Results for the 55 artery model

The above analysis is abstruse and undoubtedly difficult to
follow without a background in large dynamical systems.
I will try to make the important points clearer by presenting
the results of this analysis applied to the 55 artery model of
the human circulation. This model has been used exten-
sively in model calculations and I have based my work on a
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slightly simplified version of the model used by Alastruey
and his colleagues in their numerical computations (refer to
Ref.13 for an example of their work). The main simplifica-
tions are the assumption of uniform arteries (no taper) and
real terminal impedances (resistances with no compliance).
With these assumptions it is possible to calculate the
characteristic impedance of each vessel and, knowing the
connectivity of the network, the reflection and trans-
mission coefficients at all of the nodes. These were used to
construct the 110� 110 scattering matrix G.

The eigenvalues and eigenvectors of G were calculated
using MatLab. The level of multiplicity of the eigenvalues
was fairly large and there were only 30 unique absolute
values of the eigenvalues. The eigenvectors associated with
each of the unique eigenvalues defined 30 different modes
for the network. Table 1 shows the time constant t in s, the
magnitude of the eigenvalue jlj and the mean wave travel
time hTi for the modes with the 6 largest time constants
and for the mode with the smallest time constant, ranked
according to the time constant.

Representations of the modes is difficult because the
indices of the arteries in the model are somewhat arbitrary
(see Fig. 8). We show them graphically in Fig. 9 where the
grey level of each artery is an indication of its weight in the
mode. The mode with the largest time constant (upper left)
is dominated by the arteries in the arm. The magnitude of
the eigenvalue for this mode is only the 4th largest but the
largest wave travel time is for the brachial artery and this is
reflected in the time constant for the mode. The modes
with the next 3 largest time constants are dominated by the
legs and lower arms. The mode with the 5th largest time
constant corresponds to the mode with the most uniform
distribution of arteries. The smallest time constant (not
shown) is interesting because it is almost completely
dominated by the celiac artery which has the smallest wave
travel time in the model.

Implications for clinical measurements of arterial
pressure

These results for the evolution of a wave front introduced
at the root of the arterial network show that the input wave
front will excite a large number of modes in the network
which decay with different time constants. Calculating
these modes and their time constants requires full knowl-
edge about the connectivity and physical properties of all
of the arteries in the network e god-like knowledge that is
not available to the clinician. We have to conclude,
therefore, that the theory does not offer direct information
about the measured waveform. It does, however, offer in-
sights into the physical processes involved which can in-
crease our understanding of the interaction of the heart
and the arteries.

The theory indicates that there are many modes that
will be stimulated by waves generated by the heart and,
after sufficient time, they will decay exponentially with
different time constants. Fitting measured data to a multi-

Table 1 The magnitude of the time constants, the ei-
genvalues and the mean wave travel times for 7 of the 30
distinct modes of the 55 artery model arranged in
descending order of the time constants. The modes for the 6
largest time constants are shown in Fig. 9.

t (s) jlj hTi (ms)

1.78 0.961 71.5
1.18 0.972 33.4
1.14 0.939 71.5
0.98 0.961 39.2
0.88 0.989 9.3
0.70 0.965 24.7
« « «

0.08 0.01 2.2

Figure 9 The eigen-modes corresponding to the 6 largest time constants. The grey scale of each artery is an indication of its
contribution to the mode.
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exponential function is “notoriously difficult”.20,21 This
means that it is very difficult to determine the multiple
time constants from measurements of the diastolic pres-
sure decay because there are many combinations of co-
efficients and time constants that can fit the same data
over the limited span of diastole.

This difficulty is illustrated in Fig. 10 where we have fit
the decaying pressure during a single diastolic period to
(dashed line) a single exponential model with a zero
asymptote, (dash dot line) a single exponential model with
a free asymptote and (dotted line) a double exponential
model with a zero asymptote. The fit of the single expo-
nential without an asymptote (R2Z0:9663) is significantly
worse than the fit of the other models which have identical
R2 values (R2Z0:9995) but the time constant (tZ0:68s) is
closer to the textbook value of the diastolic time constant.
The single exponential model with a free asymptote gives a
significantly shorter time constant (tZ0:28s) but a sur-
prisingly high value of the asymptote. The asymptote of the
double exponential model is zero but the largest time
constant (tZ5:58s) means that this asymptote is reached
very slowly. The smaller time constant for the double
exponential model (tZ0:24s) is close to the time constant
for the single exponential with an asymptote model. Fitting
higher order exponential models to the data do not lead to
any significant increase in the fitting statistics and the re-
sults are unpredictable and generally uninterpretable.

The only message we can draw from this example is that
there are many exponential models that will fit the
decaying diastolic pressure. The fitted time constants
depend on the choice of model and so it is probably wrong
to cite the time constant as a unique parameter describing
diastole. The second message is that using any of the
models fitted during the diastolic period can be used with
confidence during diastole but should be used with caution
when extrapolating to longer times.

The implications of this to the determination of the
reservoir pressure which involves fitting the diastolic pres-
sure with a single exponential with a free asymptote and
extrapolating this into the systolic period are uncertain and
warrant further research. The work described here suggests
that the reservoir pressure should have a multi-exponential
form but the uncertainty in fitting such a model to diastole
limits the practical usefulness of this result. It is clear,
however, that the long-time effect of the wave fronts
generated by the input from the heart to the arteries is not
negligible. This can be illustrated very clearly by looking at

Figure 10 Comparison of different exponential models to
the diastolic pressure measured in the ascending aorta. (solid
line) P measured for 3 beats in the ascending aorta using an
invasive pressure catheter calibrated to atmospheric pressure.
(dashed line) data fitted by a single exponential with zero
asymptote PZP0e

�t=t1 . (dot dash line) data fitted by a single
exponential with a free asymptote PZðP0 � PNÞe�t=t2 þ PN.
(dotted line) data fitted by a double exponential with zero
asymptote PZP0ðae�t=t3 þ ð1� aÞe�t=t4 Þ. The single exponent
with zero asymptote does not fit the data during diastole as
well as the other models. The fits using the single exponential
model with asymptote and the double exponential model with
zero asymptote are statistically indistinguishable (R2Z0:9995

for both cases) but diverge significantly for times longer than
the diastolic period. The fitted time constants are t1Z0:68s,
t2Z0:28s, t3Z0:24s and t4Z5:58s.

Figure 11 The pressure in the ascending aorta calculated by
J. Alastruey for the simplified 55-artery model used in this
study. The black line shows the periodic pressure that is
generated by a given periodic inflow from the heart. Note that
the relatively large fluctuations in pressure seen in late systole
and mid-diastole and persist for at least 2 s into the extended
diastole do not appear in his calculations which include a sig-
nificant level of compliance the terminal impedances in the
model. The grey lines are the results obtained when the input
from the heart was stopped to model the effect of an extended
diastole. Because the pressure was periodic, with a period of
1 s, the light grey lines show the pressure that would result if
inflow from the heart was stopped after 1, 2 and 3 beats.
Looking at the fourth beat in the sequence, we see that nearly
half of the diastolic pressure (the minimum pressure at the
start of the next systole) is due to the pressure that would be
present in the artery if the inflow was stopped at the end of the
second beat. Furthermore, about half of that pressure is due to
the pressure remaining in the arterial system due to the first
beat. This exponentially decreasing contribution from previous
beats further and further away from the current beat is typical
of exponential processes and is clearly not negligible. It is this
contribution to the arterial pressure that is modelled by the
reservoir pressure.
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some computational results for the simplified 55 artery
model (kindly generated by J. Alastruey) where the pres-
sure in the ascending aorta was calculated for a given pe-
riodic flow from the heart. The calculations were started at
arbitrary initial conditions and continued until the calcu-
lated pressure became periodic, at which point the input
from the heart was stopped, corresponding to an indefi-
nitely extended diastole. The result of that calculation is
shown in Fig. 11.

The light grey lines indicate the pressure in the
ascending aorta calculated assuming that the flow from the
heart into the arteries was stopped before the start of the
next systole. Because the calculated pressures are peri-
odic, we can plot the result of extended diastole occurring
after first, second or third beat. In this way we can see the
effect of the previous systoles on subsequent beats. In this
example, approximately half of the diastolic pressure at
the start of a beat is due to pressure that was generated by
the previous systole. The pressure due to the systole two
beats before the current beat contributes about a quarter
of the diastolic pressure and this contribution falls of
exponentially with all of the previous beats. For this
calculation we know that the pressure will asymptote to
zero and fitting a single exponential model with a zero
asymptote give a time constant to the extended diastole
tZ1:02s. Looking at Table 1 we see that this fitted time
constant is in the middle of the 6 largest time constants
calculated for the this model. This suggests that the
calculated data could be fitted equally well with a single
exponential model or a high order exponential model with
time constants given by the theory.

Conclusions

To conclude this part, we must emphasise that this method
of analysis of arterial hemodynamics is new. It is work in
progress and the results should be considered to be pre-
liminary. Although we have made many simplifications in
the analysis presented here, these simplifications are not
essential to the approach and most of them can be relaxed
at the cost of more complex analysis. In particular looking
at the case of a single wave front introduced at the aortic
root at time zero does not limit the generality of the
analysis since any waveform at the root can be decomposed
into a sequence of individual wave fronts and the results for
the general case can be found by convolution of the single
wave front results.

The initial aim of the work was to provide a theoretical
basis for the reservoir-wave hypothesis but that has not yet
been achieved. Another aim was to explore the effect of
the complex anatomy of the arterial network, a binary tree
with a large number of edges (vessels) including a number
of loops (anastomoses). To explore this question we
considered a highly simplified model (inviscid, uniform ar-
teries, etc.) where the only source of complexity was the
morphology of the arterial network. The results indicate
that the reflection and re-reflection of the single inputed
wave front generates complexity that increases exponen-
tially with time. These results support the argument that
simple single-vessel or T-tube modes of the arteries can
give misleading results.22

The idea of a wave history, the list of all the vessels
traversed by a particular wave front, with the ancillary
concept of a step, the traversal of one vessel, provides a
systematic approach to the exponentially growing
complexity. For short times this approach could yield a
detailed description of arterial hemodynamics. As time in-
creases the number of wave fronts increases to the point
where the combinatorial complexity of their wave histories
will make detailed analysis impossible on even the largest
computers.

Fortunately, as the number of waves increases their
statistical analysis becomes increasingly valid and accu-
rate. A crucial point in this analysis is that the number of
steps in the history of a wave N can be related to the time
statistically; tZNhTi where hTi is an appropriate average
wave travel time. Because the wave travel time varies
greatly between the vessels, the time taken to execute N
steps will vary greatly for short times. For longer times the
paths of the different waves will start to overlap and
eventually all of the wave fronts will have, on average,
visited the whole arterial network in different sequences.
The results we have presented pertain to these old waves
and my current belief is that the reservoir pressure is the
sum of the ‘old’ waves and the excess pressure is the sum of
the ‘new’ waves. This is, of course, an intuitive rather than
a rigorous statement.

Figure 11 suggests that the old waves, which we have
shown decay exponentially with time, dominate diastole.
Furthermore by extrapolating this behaviour through the
next systole (the old waves are not turned off by the start
of a new systole) we see that the diastolic arterial pressure
can be seen as the summation of the old waves generated
by all of the succeeding systoles.

None of the results presented here suggest new mea-
surements or analyses that will be immediately useful in
the clinic. My clinical colleagues, normally so receptive and
helpful, would tell me to get lost (very politely) if I asked
them to measure the geometry and wave speeds of all of a
patient’s arteries so that I could calculate their eigen-
modes. However, I believe that this new way of looking at
arterial hemodynamics will lead to a deeper understanding
and, eventually, to improved clinical methods.

To summarise this final section, we have shown:

(1) The evolution of a single wave front at the root of the
arterial system at tZ0 can be calculated from the
scattering matrix describing the reflection and
transmission coefficients in all of the arteries.

(2) The eigenvalues and eigenvectors of this matrix
define a large number of eigen-modes.

(3) Each eigen-mode decays with a different time
constant.

(4) In a 55 artery model, up to 30 eigen-modes exist with
different time constants.

(5) Testing the theory is difficult because of the difficulty
in fitting multi-exponential models to data.

Conflict of interests

The author has no conflict of interests in presenting this
work.

100 K.H. Parker



References

1. Westerhof N, Elzinga G, Sipkema P. Forward and backward
waves in the arterial system. Cardiovasc Res 1972;6:648e56.

2. LaxminarayanS. Thecalculationof forwardandbackwardwaves
in the arterial system. Med Biol Eng Comput 1979;17:130.

3. Wang JJ, O’Brien AB, Shrive NG, Parker KH, Tyberg JV. Time-
domain representation of ventricular-arterial coupling as a
windkessel and wave system. Am J Physiol Heart Circ Physiol
2003;284:H1358e68.

4. Tyberg JV, Davies JE, Wang Z, Whitelaw WA, Flewitt JA,
Shrive NG, et al. Wave intensity analysis and the development
of the reservoir-wave approach.Med Biol Eng Comput 2009;47:
221e32.

5. Tyberg JV, Bouwmeester JC, Parker KH, Shrive NG, Wang J-J.
The case for the reservoir-wave approach. Int J Cardiol 2014;
47:221e32.

6. Westerhof N, Segers P, Westerhof B. Wave separation, wave
intensity, the reservoir-wave concept, and the instantaneous
wave-free ratio. Hypertension 2015;66:93e8.

7. Davies JE, Baksi J, Francis DP, Hadjiloizou N, Whinnett ZI,
Manisty CH, et al. The arterial reservoir pressure increases with
aging and is the major determinant of the aortic augmentation
index. Am J Physiol Heart Circ Physiol 2010;298:H580e6.

8. Davies JE, Lacy P, Tillin T, Collier D, Cruickshank JK, Francis DP,
et al. Excess pressure integral predicts cardiovascular events
independent of other risk factors in the Conduit Artery Func-
tional Evaluation (CAFE) sub-study of Anglo-Scandanavian Car-
diac Outcomes Trial (ASCOT). Hypertension 2014;4:60e8.

9. Hametner B, Wassertheurer S, Hughes AD, Parker KH, Weber T,
Eber B. Reservoir and excess pressures predict cardiovascular
events in high-risk patients. Int J Cardiol 2014;171:31e6.

10. Narayan O, Parker KH, Davies JE, Hughes AD, Meredith IT,
Cameron JD. Reservoir pressure analysis of aortic blood

pressure e an in vivo study at 5 locations in humans. 2017
[submitted for publication].

11. Taylor MG. The input impedance of an assembly of randomly
branching elastic tubes. Biophys J 1966;6:29e51.

12. Westerhof N. Analog studies of human systemic hemodynamics
[PhD thesis]. University of Pennsylvania; 1968.

13. Willemet M, Chowienczyk P, Alastruey J. A database of virtual
healthy subhects to assess the accuracy of foot-to-foot pulse
wave velocities for estimation of aortic stiffness. Am J Physiol
Heart Circ Physiol 2015;309:H663e75.

14. Westerhof N, Bosman F, de Vries CJ, Noordergraaf A. Analog
studies of the human systemic arterial tree. J Biomech 1969;2:
121e43.

15. Stergiopulos N, Young D, Rogge T. Computer simulation of
arteria flow with applications to arterial and aortic stenoses. J
Biomech 1992;25:1477e88.

16. Segers P. Biomechanische Modellering van het Arterieel Sys-
teem voor de niet-invasieve bepaling van de Arterile Com-
pliantie [PhD thesis]. University of Ghent; 1997.

17. Alastruey J. Numerical modelling of pulse wave propagation in
the cardiovascular system: development, validation and clin-
ical applications [PhD thesis]. London: Imperial College; 2006.

18. Parker KH. An introduction to wave intensity analysis. Med Biol
Eng Comput 2009;47:175e88.

19. http://www.universetoday.com/36302/atoms-in-the-
universe/ [Accessed 17 November 2016].

20. Transtrum MK, Machta BB, Brown KS, Daniels BC, Myers CR,
Sethna JP. Perspective: sloppiness and emergent theories in
physics, biology, and beyond. J Chem Phys 2015;143. http:
//dx.doi.org/10.1063/1.4923066. 010901.

21. Ruhe A. Fitting exponential data by positive sums of expo-
nentials. SIAM J Sci Stat Comput 1981;1:481e98.

22. Westerhof N. Talk to the aterial hemodynamics seminar: past,
present and future this issue of artery.

The reservoir-wave model 101

http://refhub.elsevier.com/S1872-9312(17)30037-6/sref1
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref1
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref1
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref2
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref2
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref3
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref3
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref3
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref3
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref3
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref4
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref4
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref4
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref4
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref4
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref5
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref5
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref5
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref5
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref6
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref6
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref6
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref6
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref7
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref7
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref7
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref7
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref7
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref8
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref8
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref8
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref8
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref8
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref8
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref9
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref9
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref9
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref9
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref11
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref11
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref11
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref12
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref12
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref13
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref13
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref13
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref13
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref13
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref14
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref14
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref14
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref14
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref15
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref15
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref15
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref15
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref16
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref16
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref16
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref17
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref17
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref17
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref18
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref18
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref18
http://www.universetoday.com/36302/atoms-in-the-universe/
http://www.universetoday.com/36302/atoms-in-the-universe/
http://dx.doi.org/10.1063/1.4923066
http://dx.doi.org/10.1063/1.4923066
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref21
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref21
http://refhub.elsevier.com/S1872-9312(17)30037-6/sref21



