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b Henry Poincaré University, France
Available online 8 November 2009

KEYWORDS
Semicarbazide-sensitive
amine oxidase;
Extracellular matrix;
Crosslinks;
Vascular smooth muscle
cells;
Arterial stiffness

Summary ‘‘Semicarbazide-sensitive amine oxidase’’ (SSAO) metabolizes primary amines into
aldehydes, hydrogen peroxide and ammonia and is largely expressed in adipocytes, lymphatic
endothelial cells and vascular smooth muscle cells (VSMCs). In vitro SSAO expression and
activity increase during VSMC differentiation and SSAO participates in glucose uptake but its
exact role in the vascular wall is unclear. Nevertheless, we think that SSAO could modulate
VSMC differentiation, as it does in adipocytes. Previous work suggested that SSAO could
contribute to vascular remodelling observed in age-related pathologies as plasma levels
increase in several cardiovascular diseases and in diabetes. In such cases, SSAO may play
a detrimental role by inducing unwanted cross-linking of extracellular matrix proteins and
could thus be an interesting target to modulate arterial stiffening. It may also participate in
LDL oxidation and inflammation.

A physiological role for SSAO in vascular development and cross-linking of elastin has been
proposed, but is not yet established. Our studies on SSAO knockout mice revealed no anomalies
in insoluble elastin content, arterial elasticity or vasomotor tone. In growing rats treated with
semicarbazide (SCZ), an SSAO inhibitor, or with b-aminopropionitrile (BAPN), a lysyl oxidase
(LOX) inhibitor, we confirmed that LOX was the most important enzyme implicated in elastin
cross-linking during arterial maturation, but in absence of specific inhibitors, we cannot
formally exclude a minor role for SSAO in this process. Specific effects of SSAO inhibition could
be an increase in the production of various extracellular matrix proteins, possibly related to
the effect of SSAO on VSMC differentiation.
ª 2009 Association for Research into Arterial Structure and Physiology. Published by Elsevier
B.V. All rights reserved.

Semicarbazide-sensitive amine oxidase (SSAO) was origi-
nally characterized by its activity in tissue and plasma and
its sensitivity to carbonyl compounds, such as semi-
carbazide (SCZ). Only ten years ago, SSAO was cloned in

different species and a high inter-species amino acid
homology was observed. Cloning has facilitated the explo-
ration of its functions, which nevertheless still remain
unclear. In fact, SSAO also exists as a soluble form whose

* INSERM U961, Faculté de Médecine, 9 avenue de la Forêt de Haye, 54 500 Vandoeuvre-Les-Nancy, France.
E-mail address: merciernathalie@hotmail.com

1872-9312/$e seefrontmatter ª 2009Association forResearch intoArterial StructureandPhysiology.PublishedbyElsevierB.V.All rights reserved.
doi:10.1016/j.artres.2009.10.002

ava i lab le at www.sc ienced i rec t . com

journa l homepage : www.e lsev i er . com/ loca te /a r t res

Artery Research (2009) 3, 141e147

mailto:merciernathalie@hotmail.com
http://www.elsevier.com/locate/artres
http://www.sciencedirect.com


activity is increased in the serum in patients with
diabetes1e3 and cardiovascular diseases, including conges-
tive heart failure,4 cerebrovascular diseases5 and athero-
sclerosis.6 SSAO activity also correlates positively with body
mass index.2 Serum levels of SSAO are also increased during
inflammation7 and other diseases (review, ref.8).

SSAO, also called vascular adhesion protein 1 (VAP-1), is an
ecto-enzyme with a long extracellular domain containing the
catalytic site, which requires a topaquinone and one copper
atom as cofactors. SSAO metabolizes primary amines into
aldehydes, ammonia and hydrogen peroxide. The physiolog-
ical substrates for SSAO still remain largely unknown.
However, SSAO can metabolize methylamine (generated from
adrenaline, creatine, creatinine and choline metabolism,
food or cigarette smoke) but also aminoacetone (generated
from glycine and threonine).9 The crystal structure of SSAO
members clearly indicates that SSAO can also interact with
free amino groups in proteins and aminosugars.10e12

Tissue and plasma SSAO activity is much higher in
humans than in rodents. SSAO expression occurs early in
development13 and continues throughout life in many cell
types but mainly in adipocytes, endothelial cells and
vascular smooth muscle cells (VSMCs). The origin of soluble
SSAO is beginning to be elucidated. SSAO release is
increased by TNFa via MMP activity in adipocytes14 and
regulated by b-adrenergic agonists and insulin,15,16 the
latter explaining the plasma SSAO increase in diabetes.
Moreover, different transgenic mouse models have shown
that adipocytes,17 but also vascular endothelial cells17 and
VSMCs18 can be major sources of plasma SSAO.

It was first suspected that SSAO could be a source of
toxicity for the arterial wall via aliphatic amine meta-
bolism. For example, allylamine, which can be oxidized by
SSAO, was shown to induce necrotic and fibrous lesions in
myocardial and vascular tissues, modifications observed in
atherosclerosis, via acrolein (generated from allylamine by
SSAO) and H2O2 production.9 Regarding the end products
formed by SSAO, aldehydes and hydrogen peroxide can
increase protein cross-linkage and oxidative stress, two
phenomena involved in aging. It is interesting to note that
methylamine or aminoacetone deamination by SSAO
generates respectively formaldehyde and methylglyoxal
and increases the formation of advanced glycation end
products (AGEs).17,19e21 AGEs can induce an increase in
arterial stiffness in diabetes, hypertension and aging.22,23

The interaction of AGEs with their receptors (RAGE) induces
the expression of pro-inflammatory mediators. An impor-
tant role is attributed to RAGEs in vascular diseases in the
literature.24 Some therapeutic agents are able to inhibit
AGE formation, such as aminoguanidine that is also an SSAO
inhibitor.25 It has been shown that diamine oxidase (another
topaquinone-containing amine oxidase) can catalyze endo-
thelial cell-mediated LDL oxidation.26 The increased SSAO
activity in plasma during diabetes mellitus could thus
accelerate the development of the degenerative compli-
cations of this pathology.9 The combination of both SSAO
end products may thus participate in the formation of
advanced glycation end products (AGEs) and in LDL (low
density lipoprotein) oxidation and be implicated in athero-
genesis. Furthermore, endothelial SSAO participates in
leukocyte trafficking and transmigration during inflammation
and we demonstrated that methylamine-SSAO activation

induces expression of endothelial E and P-selectins, one step
of the adhesive cascade, via generation of its end products.27

Soluble SSAO incubated with methylamine on rat and
human VSMCs induced cell toxicity, mediated by the end
products generated. It activated apoptosis in A7r5 cells, as
detected by chromatin condensation, Caspase-3 activation,
PARP cleavage and cytochrome c release to cytosol due to
formaldehyde, rather than H2O2.

28 Methylamine treatment
of a smooth muscle cell line stably transfected with SSAO
also induced a dose- and time-dependent cytotoxic effect
involving the tumour suppressor protein p53, increased
PUMA-alpha expression with a decrease in mitochondrial
Bcl2 family proteins and activation of caspases.29

Taken together, all these results suggest that increased
soluble and tissue SSAO activity in pathological conditions,
could contribute to vascular damage. Thus, it is of potential
clinical interest to better understand the role of SSAO in
human physiology and physiopathology and to develop
specific SSAO antagonists.

Before starting my PhD, SSAO was already known to be
involved in amine-stimulated glucose transport in adipo-
cytes,30 cell adhesion, lymphocyte trafficking and gran-
ulocyte extravasation in endothelial cells from lymphatic
vessels.27 Our work has been mainly aimed at investigating
a possible physiological role of SSAO during vascular growth
and maturation.

Personal contributions

SSAO, cell differentiation and glucose transport in
vitro

In our laboratory, SSAO was cloned in a mouse adipose cell
line where its expression is induced during adipose matu-
ration.31 H2O2, known as an insulin-mimicking molecule in
adipocytes, was largely responsible for the SSAO-promoting
effect on adipose cell differentiation.32 Moreover, SSAO
expression was shown to be down-regulated by TNFa31,32

and AMPc31 in adipocytes. Others found that endothelial
SSAO could be up-regulated by TNFa but also by other
inflammatory cytokines (IL-1, IL4, Interferon g), and LPS.33

In parallel, we were also interested in SSAO functions in
the arterial wall. In physiological conditions, SSAO is largely
expressed in the media from large vessels in vivo, which
contains mainly SMCs.34,35 It was also shown that both
VSMCs and non-vascular SMCs in culture expressed
SSAO.36,37 We have shown that re-differentiation of
cultured VSMCs in a serum-free medium supplemented with
growth factors induced expression and activity of SSAO, in
parallel with other differentiation markers.38 It is possible
that glucose and H2O2 may act as a signal modulating the
expression of genes coding for differentiation markers and
ECM proteins. Even though SSAO activation promotes
adipose cell differentiation through H2O2,

32 no direct
argument has yet shown the implication of SSAO in VSMC
maturation. Nevertheless, in some forms of aneurysm, the
expression of SSAO and smooth muscle myosin heavy chain
(a marker of VSMC differentiation) are both markedly
decreased at the aneurysmal site where elastic fibres are
disorganised.39 In contrast, SSAO is expressed along the
elastic lamellae in the non-affected zone.40 This is in
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accord with our in vitro results. The vascular system,
adipose tissue, and smooth muscle cells express SSAO early
during embryonic development suggesting that SSAO could
be involved in the differentiation process (as in tissue
vascularisation) during this period.13

We have also shown in vitro that H2O2, generated via
methylamine oxidation by SSAO, increases glucose trans-
port and membrane accumulation of GLUT1.38 An associa-
tion between a GLUT mutation and aneurysm formation has
recently been shown that might be explained by an
overproduction of TGFb and VSMC dedifferentiation.41,42

Thus these results reinforce the idea that SSAO could be
implicated in VSMC differentiation. In an in vivo rat model
of cerebral aneurysms, it has recently been shown that
a decrease in SSAO activity and expression, associated with
SMC dedifferentiation, is strongly and independently
correlated with elastic laminar thinning during the devel-
opment of intracranial aneurysms.39 The authors suggested
that VSMC dedifferentiation induced by hemodynamic
stress could impair elastic lamellar organization through
a decrease in elastin content and a possible SSAO-related
elastin cross-link deficiency.

Possible role of SSAO in organization and
maturation of arterial ECM

The maturation and structure of elastic fibres and collagen
depends on the formation of intra- and intermolecular
crosslinks, a physiological process which occurs in

development and growth. This process strongly influences
elasticity and resistance of large arteries. Lysyl oxidase
(LOX), an enzyme belonging to the same family as SSAO, is
the major enzyme involved in this pathway (review, ref.43).
Inactivation of the LOX gene leads to perinatal death and
to aortic aneurysm formation.44 Langford et al.45 have
suggested that SSAO could play an important role in arterial
wall organization as they showed that chronic inhibition of
SSAO in young rats was associated with aortic damage and
dilatation, with elastic lamellar disorganization. In vitro
experiments confirmed that SSAO inhibition produced aber-
rations in collagen and elastin deposition by heart SMCs.46

Furthermore, Gokturk et al.18 have developed a transgenic
murine model over-expressing human VAP-1 in VSMCs. These
mice presented an elevated pulse pressure, together with an
abnormal elastic lamellar structure in the aorta, suggesting
increased rigidity of large arteries as a result of an elevated
SSAO activity, as well as a possible physiologic role for SSAO
in elastic fibre maturation. In addition, as mentioned above,
a strong decrease in SSAO was observed in aortic and cerebral
aneurysms and a co-localization was found between SSAO
and elastic fibres in the peripheral unaffected zones.39 All
these results provide arguments to support a role for SSAO
in the synthesis, maturation and/or organization of ECM
proteins, and elastin in particular.

An in vivo rat model of pharmacological SSAO inhibition
Based on these observations, we examined the conse-
quences of chronic inhibition of SSAO by SCZ during the

Table 1 Comparison of the different animal and cell models used to elucidate the role of SSAO in the arterial wall.

Genetically modified mice Pharmacological SSAO inhibition
in growing rats

Cell models

� SSAO KO mice versus WT mice50

- MAP and Pulse pressure: normal
- Arterial stiffness: normal
- Mechanical resistance: normal
- LOX activity: normal
- Elastic fibre morphology: normal
- Elastin and collagen content: normal
- Vascular reactivity: normal

� Mercier et al.47,55

- MAP normal and pulse pressure b
- Arterial stiffness: b
- Mechanical resistance: a
- LOX activity a
- Alterations of elastic lamellae
- ECM protein b

VSMC differentiation38

- SSAO expression and activity b
during VSMC differentiation

- Methylamine b Glut1 expression
at the plasma membrane

SMCs from neonatal rat46

- SSAO and ECM production
increase in parallel

- SSAO inhibition induces
aberrations in collagen
and elastin deposits

� VSMCs over-expressing hSSAO
versus WT mice18,57

- MAP a and pulse pressure b
- Abnormal structure of elastic fibres
- Problem of blood pressure regulation

� Langford et al.45

- Disorganization of elastin architecture
- Degenerative medial changes
- Mature elastin and collagen a
- Total elastin and collagen Z
- LOX activity Z
- Cross-sectional diameter of aorta b

Effect of soluble SSAO on VSMCs28

SSAO end products induce
apoptosis:
- Caspase-3 activation
- PARP cleavage
- Cytochrome C release

Mice over-expressing hSSAO in
endothelial cells17

The hVAP-1 transgene together with
increased SSAO substrate availability:
- b glucose uptake,
- Diabetes-like complications (AGE product

formation, elevated blood pressure,
altered atherosclerosis progression,
and nephropathy)

� VSMCs surexpressing hSSAO29,58

Methylamine induces
- Cytotoxic effects on VSMCs
- P53 phosphorylation
- PMA a expression b
- Bcl2 a
- Caspase stimulation
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period of rapid growth in the Sprague Dawley rat on the
functional, histological and biochemical properties of large
arteries.47 In vivo, distensibility was not modified whereas
the Einc/wall stress curves showed an increased arterial
stiffness in response to SCZ. In vitro experiments revealed
a significantly decreased rupture pressure in carotid
arteries from SCZ-treated rats compared to controls. This
result indicated that arterial fragility is induced by SCZ,
which was accompanied by a diminution in insoluble,
crosslinked elastin and alterations of elastic lamellae.
Elastic lamellar structure was modified by the presence of
peripheral deposits of dense globular masses, supposed to
be composed of non-crosslinked elastin and proteoglycans.
Because these effects were similar to those observed
after pharmacological inhibition of LOX by BAPN,48,49 we
measured LOX activity in SCZ-treated rats. In contrast to
the results of Langford et al.,45 we found a significant (40%)
inhibition of LOX activity induced by SCZ. Thus, it was not
possible to know whether the effects induced by SCZ were
due to SSAO or to LOX inhibition. In SCZ-treated rats, the
medial thickness was also increased in association with an

increased weight of extracellular proteins other than
insoluble elastin and collagen.

An SSAO knockout mice model
In order to avoid the confounding effects of SCZ-induced
LOX inhibition, we examined the vascular phenotype of
SSAO deficient mice.50 In vivo, SSAO knockout mice
presented a decrease in carotid distensibility in association
with an increase in carotid diameter compared to WT mice.
In SSAO knockout mice, arterial morphology was normal,
there was no reduction in crosslinked elastin or in total
collagen, muscular tone was not modified and elastic
modulus was unchanged. These results could not be
explained by a compensatory increased in LOX activity in
the KO mice. We thus could not confirm the hypothesis of
a role for SSAO in cross-link formation, at least during
development and growth in the mouse.

It has been proposed that H2O2 generated by SSAO could
increase vascular tone and that inhibition of SSAO could
participate in vasodilatory effects induced by hydralazine
in the rat.51e53 But these results diverge from those

Figure 1 Summary of possible roles of SSAO in the vascular wall. SSAO is expressed at the plasma membrane of differentiated
VSMCs with its active site located in the extracellular space, where it transforms amino groups from primary amines or within
proteins into aldehydes (RHCO), hydrogen peroxide (H2O2) and ammonia (NH3). SSAO activates amine-stimulated glucose transport
partly through H2O2. Glucose and H2O2 may act as a signal modulating the expression of genes coding for differentiation markers
and ECM proteins. H2O2 is a source of hydroxyl radicals that can combine with aldehydes and participate in protein modifications, in
the formation of crosslinks and advanced glycated end products (AGE) and in oxidation of low density lipoproteins (ox LDL). These
events could lead to modification of VSMC phenotype, organization of ECM, apoptosis and/or arterial stiffness. SSAO has also been
shown to be expressed by endothelial cells (EC) during inflammation and can up-regulate E and P selectin expression. SSAO is also
present in the serum where the end products generated from methylamine (MA) could also participate in LDL oxidation, AGE
formation and apoptosis induction via activation of P53 and a decrease in Bcl2 leading to activation of caspase 9 and 3. Thus, SSAO
might play a role in vascular wall physiopathology, especially in atherosclerosis.
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obtained by Coklin et al.54 on human left internal mammary
artery segments, where methylamine induced vasodilata-
tion via formaldehyde and H2O2 production. However, in
our SSAO knockout mouse model, the pharmacological
profile of isolated mesenteric and carotid arteries was not
modified compared to wild type mice, implying no major
VSMC or endothelial dysfunction in the absence of SSAO, at
least in mice.50

Comparison of the roles of LOX and SSAO in arterial
extracellular matrix
To attempt to discriminate between SCZ effects on the ECM
that were due to LOX inhibition from those due to SSAO
inhibition, we used high and low equimolar doses of BAPN
(a specific LOX inhibitor) and SCZ to treat Brown-Norway
(BN) rats during the rapid growth period.55 The BN rat
presents a rare arterial phenotype implicating the elastic
fibre network (Large numbers of defects in the internal
elastic Lamellae (IEL), a deficit in aortic insoluble elastin
and a lower LOX activity compared to other strains). This
strain was chosen, rather than the previously used Sprague
Dawley, because IEL rupture is particularly sensitive to
compounds affecting elastin and collagen cross-linking and
is precisely quantifiable.48,56 The BN is thus is a good model
in which to carry out such a study. Our results showed that
SCZ was as efficient as BAPN in inhibiting LOX activity but
SCZ inhibited SSAO activity in aorta far more than BAPN.
Both inhibitors decreased arterial rupture pressure and
insoluble elastin content and increased collagen solubility
and IEL rupture, but SCZ was more potent. Thus either
these effects are all mediated by LOX, SCZ being a more
effective LOX inhibitor than BAPN in our conditions, or SSAO
acts similarly to and in synergy with LOX on the extracel-
lular matrix, but playing a minor role. We must await the
availability of more specific inhibitors to definitely settle
the question. However, aortic weight was increased only by
the high dose of SCZ, mainly due to increased ECM proteins
other than insoluble elastin, and to a lesser extent by
increased collagen, suggesting that this may be a specific
effect of SSAO inhibition. This may be linked to a role for
SSAO in VSMC differentiation.

The main animal and cell models that may help to
understand the role of SSAO in the arterial wall are
summarized in Table 1 and the various mechanisms
proposed are schematized in Fig. 1.

Conclusion

Previous work has provided several lines of evidence that
SSAO could contribute to vascular remodelling observed in
age-related pathologies (especially cardiovascular diseases
and diabetes) by inducing unwanted cross-linking of
extracellular matrix proteins and participating in LDL
oxidation and inflammation. SSAO could thus be an inter-
esting therapeutic target to modulate, in particular for
arterial stiffening. As for its physiological role in vascular
growth and maturation, we conclude that SSAO does not
play a major role in cross-link formation of elastin or
collagen in contrast to LOX, although it might provide
a minor, accessory contribution. It appears probable that
SSAO is involved in glucose transport and it may participate

in VSMC differentiation, as it does in adipocytes, in which
case it may modulate ECM protein production by VSMCs. It
is clear that further studies are required to elucidate the
exact role in vascular physiology of this enzyme which is
highly expressed by VSMCs.
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